ONE - On-device Neural Engine
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
ElementwiseActivationLayer.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef __ONERT_BACKEND_CPU_OPS_ElementwiseActivationLAYER_H__
18#define __ONERT_BACKEND_CPU_OPS_ElementwiseActivationLAYER_H__
19
21
22#include <exec/IFunction.h>
23
25{
26
28{
29 kElu,
31 kReLU,
32 kTanh,
34 kGELU
35};
36
38{
39public:
41
42public:
43 void configure(const IPortableTensor *input, IPortableTensor *output, float alpha, float beta,
44 bool approximate, const ElementwiseActivationType op_type);
45
46 void run() override;
47
49
50 void EvalUsingLookupTable(const IPortableTensor *input, IPortableTensor *output);
51
52protected:
55 uint8_t _table[256];
56 std::function<void(const IPortableTensor *input, IPortableTensor *output)> _kernel;
57};
58
59} // namespace onert::backend::cpu::ops
60
61#endif // __ONERT_BACKEND_CPU_OPS_ElementwiseActivationLAYER_H__
A tensor class that is portable for other backends.
void PopulateLookupTable(const ElementwiseActivationType op_type)
std::function< void(const IPortableTensor *input, IPortableTensor *output)> _kernel
void configure(const IPortableTensor *input, IPortableTensor *output, float alpha, float beta, bool approximate, const ElementwiseActivationType op_type)
void EvalUsingLookupTable(const IPortableTensor *input, IPortableTensor *output)