27 float output_activation_min = 0, output_activation_max = 0;
55 nnfw::cker::DepthwiseConv<float, float>(
58 getBuffer<float>(
_output), _external_context->ruy_context());
63 int32_t output_activation_min = 0;
64 int32_t output_activation_max = 0;
66 &output_activation_max);
68 double real_multiplier = 0.0;
69 int32_t output_multiplier = 0;
70 int32_t output_shift = 0;
90 nnfw::cker::DepthwiseConv<uint8_t, int32_t>(
93 getBuffer<uint8_t>(
_output), _external_context->ruy_context());
108 int32_t output_activation_min = 0;
109 int32_t output_activation_max = 0;
111 &output_activation_max);
118 op_params, _per_channel_output_multiplier.data(), _per_channel_output_shift.data(),
132 int32_t output_activation_min = 0;
133 int32_t output_activation_max = 0;
135 &output_activation_max);
153 op_params, _per_channel_output_multiplier.data(), _per_channel_output_shift.data(),
156 _external_context->ruy_context());
163 prepareQ8iHybridPerChannel();
167 float output_activation_min = 0, output_activation_max = 0;
171 const int batch_size = input_shape.Dims(0);
172 const int input_size = input_shape.FlatSize() / batch_size;
174 auto scaling_factors_ptr = _input_scaling_factors.data();
175 auto input_offsets_ptr = _input_offsets.data();
177 for (
int b = 0; b < batch_size; ++b)
179 const int offset = b * input_size;
181 _input_quantized.data() +
offset,
182 &scaling_factors_ptr[b], &input_offsets_ptr[b]);
197 op_params, _input_scaling_factors.data(),
getShape(
_input), _input_quantized.data(),
200 _input_offsets.data());
203void DepthwiseConvolutionLayer::prepareQ8i()
208 _per_channel_output_shift);
211void DepthwiseConvolutionLayer::prepareQ8uPerChannel()
216 _per_channel_output_shift);
219void DepthwiseConvolutionLayer::prepareQ8iHybridPerChannel()
225 const int batch_size = input_shape.Dims(0);
226 const int input_size = input_shape.FlatSize() / batch_size;
227 _input_quantized.resize(input_size);
229 _input_scaling_factors.resize(batch_size);
230 _input_offsets.resize(batch_size);
233void DepthwiseConvolutionLayer::ensureQ8iHybridPerChannel()
240 if ((int64_t)kernel_input_channel != (int64_t)kernel_zerop_cnt)
241 throw std::runtime_error{
"DConv2D hybrid supports only per-channel quantized weight."};
246 const uint32_t paddingLeft,
const uint32_t paddingRight,
const uint32_t paddingTop,
247 const uint32_t paddingBottom,
const uint32_t strideWidth,
const uint32_t strideHeight,
248 const uint32_t multiplier,
const uint32_t dilationWidth,
const uint32_t dilationHeight,
250 const std::shared_ptr<ExternalContext> &external_context)
266 _external_context = external_context;
272 ensureQ8iHybridPerChannel();
273 prepareQ8iHybridPerChannel();
288 if (per_channel_quantized)
290 prepareQ8uPerChannel();
309 if (per_channel_quantized)
320 throw std::runtime_error{
"DepthwiseConv: unsupported data type"};
int32_t Dims(int i) const
A tensor class that is portable for other backends.
const std::vector< float > & data_scales() const override final
float data_scale() const override final
int32_t data_zero_point() const override final
const std::vector< int32_t > & data_zero_points() const override
ir::DataType data_type() const override final
bool is_dynamic() const override final
Return true if the tensor needs dynamic allocation, meaning that during compile-time the outpus shape...
bool is_constant() const override final
Return true if the tensor is constant.
const IPortableTensor * _input
void configure(const IPortableTensor *input, const IPortableTensor *kernel, const IPortableTensor *bias, const uint32_t paddingLeft, const uint32_t paddingRight, const uint32_t paddingTop, const uint32_t paddingBottom, const uint32_t strideW, const uint32_t strideH, const uint32_t multiplier, const uint32_t dilationWidth, const uint32_t dilationHeight, const ir::Activation activation, IPortableTensor *output, const std::shared_ptr< ExternalContext > &external_context)
const IPortableTensor * _bias
ir::Activation _activation
const IPortableTensor * _kernel
void convQ8iHybridPerChannel()
IPortableTensor * _output
__global uchar * offset(const Image *img, int x, int y)
void DepthwiseConvPerChannel(const DepthwiseConvParams ¶ms, const int32_t *output_multiplier, const int32_t *output_shift, const Shape &input_shape, const int8_t *input_data, const Shape &filter_shape, const int8_t *filter_data, const Shape &bias_shape, const int32_t *bias_data, const Shape &output_shape, int8_t *output_data, ruy::Context *ruy_context)
void DepthwiseConvPerChannel(const DepthwiseConvParams ¶ms, const int32_t *output_multiplier, const int32_t *output_shift, const Shape &input_shape, const uint8_t *input_data, const Shape &filter_shape, const uint8_t *filter_data, const int32_t *filter_zeropoint, const Shape &bias_shape, const int32_t *bias_data, const Shape &output_shape, uint8_t *output_data)
void DepthwiseConvHybridPerChannel(const DepthwiseConvParams ¶ms, float *scaling_factors_ptr, const Shape &input_shape, const int8_t *input_data, const Shape &filter_shape, const int8_t *filter_data, const Shape &bias_shape, const float *bias_data, const Shape &output_shape, float *output_data, const float *per_channel_scale, int32_t *input_offset)
void PortableAsymmetricQuantizeFloats(const float *values, const int size, int8_t *quantized_values, float *scaling_factor, int32_t *offset)
nnfw::cker::Shape getShape(const IPortableTensor *tensor)
void GetQuantizedConvolutionMultipliersAndShifts(float input_scale, float output_scale, const float *filter_scales, size_t filter_scales_size, int num_channels, std::vector< int32_t > &per_channel_output_multiplier, std::vector< int > &per_channel_output_shift)
void QuantizeMultiplier(double double_multiplier, int32_t *quantized_multiplier, int *shift)
void CalculateActivationRangeQuantized(ir::Activation activation, const IPortableTensor *output, int32_t *act_min, int32_t *act_max)
void GetQuantizedConvolutionMultiplier(const IPortableTensor *input, const IPortableTensor *filter, const IPortableTensor *bias, const IPortableTensor *output, double *multiplier)
void CalculateActivationRange(ir::Activation activation, T *activation_min, T *activation_max)
float float_activation_min
int16_t dilation_height_factor
int32_t output_multiplier
int16_t dilation_width_factor
int32_t quantized_activation_max
float float_activation_max
int32_t quantized_activation_min
PaddingValues padding_values