ONE - On-device Neural Engine
Loading...
Searching...
No Matches
onert::backend::cpu::ops::DepthwiseConvolutionLayer Class Reference

#include <DepthwiseConvolutionLayer.h>

Collaboration diagram for onert::backend::cpu::ops::DepthwiseConvolutionLayer:

Public Member Functions

 DepthwiseConvolutionLayer ()=default
 
void convFloat32 ()
 
void convQ8uPerTensor ()
 
void convQ8uPerChannel ()
 
void convQ8i ()
 
void convQ8iHybridPerChannel ()
 
void configure (const IPortableTensor *input, const IPortableTensor *kernel, const IPortableTensor *bias, const uint32_t paddingLeft, const uint32_t paddingRight, const uint32_t paddingTop, const uint32_t paddingBottom, const uint32_t strideW, const uint32_t strideH, const uint32_t multiplier, const uint32_t dilationWidth, const uint32_t dilationHeight, const ir::Activation activation, IPortableTensor *output, const std::shared_ptr< ExternalContext > &external_context)
 
void run () override
 
- Public Member Functions inherited from onert::exec::IFunction
virtual ~IFunction ()=default
 
virtual void prepare ()
 

Protected Attributes

const IPortableTensor_input {nullptr}
 
const IPortableTensor_kernel {nullptr}
 
const IPortableTensor_bias {nullptr}
 
IPortableTensor_output {nullptr}
 
uint32_t _paddingLeft {0}
 
uint32_t _paddingTop {0}
 
uint32_t _paddingRight {0}
 
uint32_t _paddingBottom {0}
 
uint32_t _strideWidth {0}
 
uint32_t _strideHeight {0}
 
uint32_t _multiplier {0}
 
uint32_t _dilationWidth {1}
 
uint32_t _dilationHeight {1}
 
ir::Activation _activation {ir::Activation::NONE}
 

Detailed Description

Definition at line 29 of file DepthwiseConvolutionLayer.h.

Constructor & Destructor Documentation

◆ DepthwiseConvolutionLayer()

onert::backend::cpu::ops::DepthwiseConvolutionLayer::DepthwiseConvolutionLayer ( )
default

Member Function Documentation

◆ configure()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::configure ( const IPortableTensor input,
const IPortableTensor kernel,
const IPortableTensor bias,
const uint32_t  paddingLeft,
const uint32_t  paddingRight,
const uint32_t  paddingTop,
const uint32_t  paddingBottom,
const uint32_t  strideW,
const uint32_t  strideH,
const uint32_t  multiplier,
const uint32_t  dilationWidth,
const uint32_t  dilationHeight,
const ir::Activation  activation,
IPortableTensor output,
const std::shared_ptr< ExternalContext > &  external_context 
)

Definition at line 244 of file DepthwiseConvolutionLayer.cc.

251{
252 _input = input;
253 _kernel = kernel;
254 _bias = bias;
255 _paddingLeft = paddingLeft;
256 _paddingRight = paddingRight;
257 _paddingTop = paddingTop;
258 _paddingBottom = paddingBottom;
259 _strideWidth = strideWidth;
260 _strideHeight = strideHeight;
261 _multiplier = multiplier;
262 _dilationWidth = dilationWidth;
263 _dilationHeight = dilationHeight;
264 _activation = activation;
265 _output = output;
266 _external_context = external_context;
267 _is_hybrid = _input->data_type() == OperandType::FLOAT32 &&
268 _kernel->data_type() == OperandType::QUANT_INT8_SYMM;
269
270 if (_is_hybrid)
271 {
272 ensureQ8iHybridPerChannel();
273 prepareQ8iHybridPerChannel();
274 _prepared = true;
275 }
276 else if (_input->data_type() == OperandType::QUANT_INT8_ASYMM)
277 {
279 {
280 prepareQ8i();
281 _prepared = true;
282 }
283 }
284 else if (_input->data_type() == OperandType::QUANT_UINT8_ASYMM && _kernel->is_constant() &&
286 {
287 const bool per_channel_quantized = _kernel->data_scales().size() > 1;
288 if (per_channel_quantized)
289 {
290 prepareQ8uPerChannel();
291 _prepared = true;
292 }
293 }
294}
const std::vector< float > & data_scales() const override final
ir::DataType data_type() const override final
bool is_dynamic() const override final
Return true if the tensor needs dynamic allocation, meaning that during compile-time the outpus shape...
bool is_constant() const override final
Return true if the tensor is constant.

References _activation, _bias, _dilationHeight, _dilationWidth, _input, _kernel, _multiplier, _output, _paddingBottom, _paddingLeft, _paddingRight, _paddingTop, _strideHeight, _strideWidth, onert::backend::IPortableTensor::data_scales(), onert::backend::IPortableTensor::data_type(), onert::backend::IPortableTensor::is_constant(), and onert::backend::IPortableTensor::is_dynamic().

◆ convFloat32()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::convFloat32 ( )

Definition at line 25 of file DepthwiseConvolutionLayer.cc.

26{
27 float output_activation_min = 0, output_activation_max = 0;
28 CalculateActivationRange(_activation, &output_activation_min, &output_activation_max);
29
31 op_params.stride_width = _strideWidth;
32 op_params.stride_height = _strideHeight;
37 op_params.depth_multiplier = _multiplier;
38 op_params.float_activation_min = output_activation_min;
39 op_params.float_activation_max = output_activation_max;
40
41 // TODO: Use the following call if TensorBuilder manages padded_filter_data
42 // and filter_buffers_data:
43 //
44 // void DepthwiseConvOp(
45 // const DepthwiseConvParams &params,
46 // const Shape &input_shape, const float *input_data,
47 // const Shape &filter_shape, const float *filter_data,
48 // const Shape &bias_shape, const float *bias_data,
49 // float *padded_filter_data, bool pad_filter,
50 // float *filter_buffers_data,
51 // const Shape &output_shape, float *output_data
52 // );
53 //
54 // See https://github.com/Samsung/ONE/pull/13669 for an example of using DepthwiseConvOp
55 nnfw::cker::DepthwiseConv<float, float>(
56 op_params, getShape(_input), getBuffer<float>(_input), getShape(_kernel),
57 getBuffer<float>(_kernel), getShape(_bias), getBuffer<float>(_bias), getShape(_output),
58 getBuffer<float>(_output), _external_context->ruy_context());
59}
nnfw::cker::Shape getShape(const IPortableTensor *tensor)
void CalculateActivationRange(ir::Activation activation, T *activation_min, T *activation_max)
PaddingValues padding_values
Definition Types.h:234

References _activation, _bias, _dilationHeight, _dilationWidth, _input, _kernel, _multiplier, _output, _paddingLeft, _paddingTop, _strideHeight, _strideWidth, onert::util::CalculateActivationRange(), nnfw::cker::DepthwiseConvParams::depth_multiplier, nnfw::cker::DepthwiseConvParams::dilation_height_factor, nnfw::cker::DepthwiseConvParams::dilation_width_factor, nnfw::cker::DepthwiseConvParams::float_activation_max, nnfw::cker::DepthwiseConvParams::float_activation_min, onert::backend::cpu::ops::getShape(), nnfw::cker::PaddingValues::height, nnfw::cker::DepthwiseConvParams::padding_values, nnfw::cker::DepthwiseConvParams::stride_height, nnfw::cker::DepthwiseConvParams::stride_width, and nnfw::cker::PaddingValues::width.

Referenced by run().

◆ convQ8i()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::convQ8i ( )

Definition at line 124 of file DepthwiseConvolutionLayer.cc.

125{
126 if (!_prepared)
127 {
128 prepareQ8i();
129 _prepared = true;
130 }
131
132 int32_t output_activation_min = 0;
133 int32_t output_activation_max = 0;
135 &output_activation_max);
136
141 op_params.depth_multiplier = _multiplier;
142 op_params.stride_width = _strideWidth;
143 op_params.stride_height = _strideHeight;
146 op_params.input_offset = -_input->data_zero_point();
147 op_params.weights_offset = 0;
149 op_params.quantized_activation_min = output_activation_min;
150 op_params.quantized_activation_max = output_activation_max;
151
153 op_params, _per_channel_output_multiplier.data(), _per_channel_output_shift.data(),
154 getShape(_input), getBuffer<int8_t>(_input), getShape(_kernel), getBuffer<int8_t>(_kernel),
155 getShape(_bias), getBuffer<int32_t>(_bias), getShape(_output), getBuffer<int8_t>(_output),
156 _external_context->ruy_context());
157}
int32_t data_zero_point() const override final
void DepthwiseConvPerChannel(const DepthwiseConvParams &params, const int32_t *output_multiplier, const int32_t *output_shift, const Shape &input_shape, const int8_t *input_data, const Shape &filter_shape, const int8_t *filter_data, const Shape &bias_shape, const int32_t *bias_data, const Shape &output_shape, int8_t *output_data, ruy::Context *ruy_context)
void CalculateActivationRangeQuantized(ir::Activation activation, const IPortableTensor *output, int32_t *act_min, int32_t *act_max)

References _activation, _bias, _dilationHeight, _dilationWidth, _input, _kernel, _multiplier, _output, _paddingLeft, _paddingTop, _strideHeight, _strideWidth, onert::backend::cpu::ops::CalculateActivationRangeQuantized(), onert::backend::IPortableTensor::data_zero_point(), nnfw::cker::DepthwiseConvParams::depth_multiplier, nnfw::cker::optimized_integer_ops::DepthwiseConvPerChannel(), nnfw::cker::DepthwiseConvParams::dilation_height_factor, nnfw::cker::DepthwiseConvParams::dilation_width_factor, onert::backend::cpu::ops::getShape(), nnfw::cker::PaddingValues::height, nnfw::cker::DepthwiseConvParams::input_offset, nnfw::cker::kSame, nnfw::cker::DepthwiseConvParams::output_offset, nnfw::cker::DepthwiseConvParams::padding_type, nnfw::cker::DepthwiseConvParams::padding_values, nnfw::cker::DepthwiseConvParams::quantized_activation_max, nnfw::cker::DepthwiseConvParams::quantized_activation_min, nnfw::cker::DepthwiseConvParams::stride_height, nnfw::cker::DepthwiseConvParams::stride_width, nnfw::cker::DepthwiseConvParams::weights_offset, and nnfw::cker::PaddingValues::width.

Referenced by run().

◆ convQ8iHybridPerChannel()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::convQ8iHybridPerChannel ( )

Definition at line 159 of file DepthwiseConvolutionLayer.cc.

160{
161 if (!_prepared)
162 {
163 prepareQ8iHybridPerChannel();
164 _prepared = true;
165 }
166
167 float output_activation_min = 0, output_activation_max = 0;
168 CalculateActivationRange(_activation, &output_activation_min, &output_activation_max);
169
170 auto input_shape = getShape(_input);
171 const int batch_size = input_shape.Dims(0);
172 const int input_size = input_shape.FlatSize() / batch_size;
173
174 auto scaling_factors_ptr = _input_scaling_factors.data();
175 auto input_offsets_ptr = _input_offsets.data();
176
177 for (int b = 0; b < batch_size; ++b)
178 {
179 const int offset = b * input_size;
180 nnfw::cker::PortableAsymmetricQuantizeFloats(getBuffer<float>(_input) + offset, input_size,
181 _input_quantized.data() + offset,
182 &scaling_factors_ptr[b], &input_offsets_ptr[b]);
183 }
184
188 op_params.depth_multiplier = _multiplier;
189 op_params.stride_width = _strideWidth;
190 op_params.stride_height = _strideHeight;
193 op_params.float_activation_min = output_activation_min;
194 op_params.float_activation_max = output_activation_max;
195
197 op_params, _input_scaling_factors.data(), getShape(_input), _input_quantized.data(),
198 getShape(_kernel), getBuffer<int8_t>(_kernel), getShape(_bias), getBuffer<float>(_bias),
199 getShape(_output), getBuffer<float>(_output), _kernel->data_scales().data(),
200 _input_offsets.data());
201}
__global uchar * offset(const Image *img, int x, int y)
Definition helpers.h:540
void DepthwiseConvHybridPerChannel(const DepthwiseConvParams &params, float *scaling_factors_ptr, const Shape &input_shape, const int8_t *input_data, const Shape &filter_shape, const int8_t *filter_data, const Shape &bias_shape, const float *bias_data, const Shape &output_shape, float *output_data, const float *per_channel_scale, int32_t *input_offset)
void PortableAsymmetricQuantizeFloats(const float *values, const int size, int8_t *quantized_values, float *scaling_factor, int32_t *offset)

References _activation, _bias, _dilationHeight, _dilationWidth, _input, _kernel, _multiplier, _output, _paddingLeft, _paddingTop, _strideHeight, _strideWidth, onert::util::CalculateActivationRange(), onert::backend::IPortableTensor::data_scales(), nnfw::cker::DepthwiseConvParams::depth_multiplier, nnfw::cker::reference_integer_ops::DepthwiseConvHybridPerChannel(), nnfw::cker::DepthwiseConvParams::dilation_height_factor, nnfw::cker::DepthwiseConvParams::dilation_width_factor, nnfw::cker::DepthwiseConvParams::float_activation_max, nnfw::cker::DepthwiseConvParams::float_activation_min, onert::backend::cpu::ops::getShape(), nnfw::cker::PaddingValues::height, offset(), nnfw::cker::DepthwiseConvParams::padding_values, nnfw::cker::PortableAsymmetricQuantizeFloats(), nnfw::cker::DepthwiseConvParams::stride_height, nnfw::cker::DepthwiseConvParams::stride_width, and nnfw::cker::PaddingValues::width.

Referenced by run().

◆ convQ8uPerChannel()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::convQ8uPerChannel ( )

Definition at line 96 of file DepthwiseConvolutionLayer.cc.

97{
101 op_params.stride_width = _strideWidth;
102 op_params.stride_height = _strideHeight;
105 op_params.depth_multiplier = _multiplier;
106 op_params.input_offset = -_input->data_zero_point();
108 int32_t output_activation_min = 0;
109 int32_t output_activation_max = 0;
111 &output_activation_max);
112 op_params.quantized_activation_min = output_activation_min;
113 op_params.quantized_activation_max = output_activation_max;
114 // NOTE: The following fields of ConvParams are not used:
115 // padding_type, weights_offset, output_{multiplier,shift}, float_activation_{min,max}
116
118 op_params, _per_channel_output_multiplier.data(), _per_channel_output_shift.data(),
119 getShape(_input), getBuffer<uint8_t>(_input), getShape(_kernel), getBuffer<uint8_t>(_kernel),
120 _kernel->data_zero_points().data(), getShape(_bias), getBuffer<int32_t>(_bias),
121 getShape(_output), getBuffer<uint8_t>(_output));
122}
const std::vector< int32_t > & data_zero_points() const override
void DepthwiseConvPerChannel(const DepthwiseConvParams &params, const int32_t *output_multiplier, const int32_t *output_shift, const Shape &input_shape, const uint8_t *input_data, const Shape &filter_shape, const uint8_t *filter_data, const int32_t *filter_zeropoint, const Shape &bias_shape, const int32_t *bias_data, const Shape &output_shape, uint8_t *output_data)

References _activation, _bias, _dilationHeight, _dilationWidth, _input, _kernel, _multiplier, _output, _paddingLeft, _paddingTop, _strideHeight, _strideWidth, onert::backend::cpu::ops::CalculateActivationRangeQuantized(), onert::backend::IPortableTensor::data_zero_point(), onert::backend::IPortableTensor::data_zero_points(), nnfw::cker::DepthwiseConvParams::depth_multiplier, nnfw::cker::reference_integer_ops::DepthwiseConvPerChannel(), nnfw::cker::DepthwiseConvParams::dilation_height_factor, nnfw::cker::DepthwiseConvParams::dilation_width_factor, onert::backend::cpu::ops::getShape(), nnfw::cker::PaddingValues::height, nnfw::cker::DepthwiseConvParams::input_offset, nnfw::cker::DepthwiseConvParams::output_offset, nnfw::cker::DepthwiseConvParams::padding_values, nnfw::cker::DepthwiseConvParams::quantized_activation_max, nnfw::cker::DepthwiseConvParams::quantized_activation_min, nnfw::cker::DepthwiseConvParams::stride_height, nnfw::cker::DepthwiseConvParams::stride_width, and nnfw::cker::PaddingValues::width.

Referenced by run().

◆ convQ8uPerTensor()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::convQ8uPerTensor ( )

Definition at line 61 of file DepthwiseConvolutionLayer.cc.

62{
63 int32_t output_activation_min = 0;
64 int32_t output_activation_max = 0;
66 &output_activation_max);
67
68 double real_multiplier = 0.0;
69 int32_t output_multiplier = 0;
70 int32_t output_shift = 0;
72 QuantizeMultiplier(real_multiplier, &output_multiplier, &output_shift);
73
75 op_params.stride_width = _strideWidth;
76 op_params.stride_height = _strideHeight;
81 op_params.depth_multiplier = _multiplier;
82 op_params.input_offset = -_input->data_zero_point();
85 op_params.output_multiplier = output_multiplier;
86 op_params.output_shift = output_shift;
87 op_params.quantized_activation_min = output_activation_min;
88 op_params.quantized_activation_max = output_activation_max;
89
90 nnfw::cker::DepthwiseConv<uint8_t, int32_t>(
91 op_params, getShape(_input), getBuffer<uint8_t>(_input), getShape(_kernel),
92 getBuffer<uint8_t>(_kernel), getShape(_bias), getBuffer<int32_t>(_bias), getShape(_output),
93 getBuffer<uint8_t>(_output), _external_context->ruy_context());
94}
void QuantizeMultiplier(double double_multiplier, int32_t *quantized_multiplier, int *shift)
void GetQuantizedConvolutionMultiplier(const IPortableTensor *input, const IPortableTensor *filter, const IPortableTensor *bias, const IPortableTensor *output, double *multiplier)

References _activation, _bias, _dilationHeight, _dilationWidth, _input, _kernel, _multiplier, _output, _paddingLeft, _paddingTop, _strideHeight, _strideWidth, onert::backend::cpu::ops::CalculateActivationRangeQuantized(), onert::backend::IPortableTensor::data_zero_point(), nnfw::cker::DepthwiseConvParams::depth_multiplier, nnfw::cker::DepthwiseConvParams::dilation_height_factor, nnfw::cker::DepthwiseConvParams::dilation_width_factor, onert::backend::cpu::ops::GetQuantizedConvolutionMultiplier(), onert::backend::cpu::ops::getShape(), nnfw::cker::PaddingValues::height, nnfw::cker::DepthwiseConvParams::input_offset, nnfw::cker::DepthwiseConvParams::output_multiplier, nnfw::cker::DepthwiseConvParams::output_offset, nnfw::cker::DepthwiseConvParams::output_shift, nnfw::cker::DepthwiseConvParams::padding_values, nnfw::cker::DepthwiseConvParams::quantized_activation_max, nnfw::cker::DepthwiseConvParams::quantized_activation_min, onert::backend::cpu::ops::QuantizeMultiplier(), nnfw::cker::DepthwiseConvParams::stride_height, nnfw::cker::DepthwiseConvParams::stride_width, nnfw::cker::DepthwiseConvParams::weights_offset, and nnfw::cker::PaddingValues::width.

Referenced by run().

◆ run()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::run ( )
overridevirtual

Implements onert::exec::IFunction.

Definition at line 296 of file DepthwiseConvolutionLayer.cc.

297{
298 if (_is_hybrid)
299 {
301 }
302 else if (_input->data_type() == OperandType::FLOAT32)
303 {
304 convFloat32();
305 }
306 else if (_input->data_type() == OperandType::QUANT_UINT8_ASYMM)
307 {
308 const bool per_channel_quantized = _kernel->data_scales().size() > 1;
309 if (per_channel_quantized)
311 else
313 }
314 else if (_input->data_type() == OperandType::QUANT_INT8_ASYMM)
315 {
316 convQ8i();
317 }
318 else
319 {
320 throw std::runtime_error{"DepthwiseConv: unsupported data type"};
321 }
322}

References _input, _kernel, convFloat32(), convQ8i(), convQ8iHybridPerChannel(), convQ8uPerChannel(), convQ8uPerTensor(), onert::backend::IPortableTensor::data_scales(), and onert::backend::IPortableTensor::data_type().

Referenced by onert::backend::train::ops::DepthwiseConvolutionLayer::forward().

Field Documentation

◆ _activation

ir::Activation onert::backend::cpu::ops::DepthwiseConvolutionLayer::_activation {ir::Activation::NONE}
protected

◆ _bias

const IPortableTensor* onert::backend::cpu::ops::DepthwiseConvolutionLayer::_bias {nullptr}
protected

◆ _dilationHeight

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_dilationHeight {1}
protected

◆ _dilationWidth

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_dilationWidth {1}
protected

◆ _input

const IPortableTensor* onert::backend::cpu::ops::DepthwiseConvolutionLayer::_input {nullptr}
protected

◆ _kernel

const IPortableTensor* onert::backend::cpu::ops::DepthwiseConvolutionLayer::_kernel {nullptr}
protected

◆ _multiplier

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_multiplier {0}
protected

◆ _output

IPortableTensor* onert::backend::cpu::ops::DepthwiseConvolutionLayer::_output {nullptr}
protected

◆ _paddingBottom

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_paddingBottom {0}
protected

Definition at line 68 of file DepthwiseConvolutionLayer.h.

68{0};

Referenced by configure().

◆ _paddingLeft

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_paddingLeft {0}
protected

◆ _paddingRight

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_paddingRight {0}
protected

Definition at line 67 of file DepthwiseConvolutionLayer.h.

67{0};

Referenced by configure().

◆ _paddingTop

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_paddingTop {0}
protected

◆ _strideHeight

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_strideHeight {0}
protected

◆ _strideWidth

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_strideWidth {0}
protected

The documentation for this class was generated from the following files: