ONE - On-device Neural Engine
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
onert::backend::cpu::ops::DepthwiseConvolutionLayer Class Reference

#include <DepthwiseConvolutionLayer.h>

Collaboration diagram for onert::backend::cpu::ops::DepthwiseConvolutionLayer:

Public Member Functions

 DepthwiseConvolutionLayer ()=default
 
void convFloat32 ()
 
void convQ8uPerTensor ()
 
void convQ8uPerChannel ()
 
void convQ8i ()
 
void convQ8iHybridPerChannel ()
 
void configure (const IPortableTensor *input, const IPortableTensor *kernel, const IPortableTensor *bias, const uint32_t paddingLeft, const uint32_t paddingRight, const uint32_t paddingTop, const uint32_t paddingBottom, const uint32_t strideW, const uint32_t strideH, const uint32_t multiplier, const uint32_t dilationWidth, const uint32_t dilationHeight, const ir::Activation activation, IPortableTensor *output, const std::shared_ptr< ExternalContext > &external_context)
 
void run () override
 
- Public Member Functions inherited from onert::exec::IFunction
virtual ~IFunction ()=default
 
virtual void prepare ()
 

Protected Attributes

const IPortableTensor_input {nullptr}
 
const IPortableTensor_kernel {nullptr}
 
const IPortableTensor_bias {nullptr}
 
IPortableTensor_output {nullptr}
 
uint32_t _paddingLeft {0}
 
uint32_t _paddingTop {0}
 
uint32_t _paddingRight {0}
 
uint32_t _paddingBottom {0}
 
uint32_t _strideWidth {0}
 
uint32_t _strideHeight {0}
 
uint32_t _multiplier {0}
 
uint32_t _dilationWidth {1}
 
uint32_t _dilationHeight {1}
 
ir::Activation _activation {ir::Activation::NONE}
 
bool _use_padded_filter {false}
 
std::unique_ptr< Tensor_padded_filter {nullptr}
 
std::unique_ptr< Tensor_filter_buffers {nullptr}
 

Detailed Description

Definition at line 30 of file DepthwiseConvolutionLayer.h.

Constructor & Destructor Documentation

◆ DepthwiseConvolutionLayer()

onert::backend::cpu::ops::DepthwiseConvolutionLayer::DepthwiseConvolutionLayer ( )
default

Member Function Documentation

◆ configure()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::configure ( const IPortableTensor input,
const IPortableTensor kernel,
const IPortableTensor bias,
const uint32_t  paddingLeft,
const uint32_t  paddingRight,
const uint32_t  paddingTop,
const uint32_t  paddingBottom,
const uint32_t  strideW,
const uint32_t  strideH,
const uint32_t  multiplier,
const uint32_t  dilationWidth,
const uint32_t  dilationHeight,
const ir::Activation  activation,
IPortableTensor output,
const std::shared_ptr< ExternalContext > &  external_context 
)

Definition at line 280 of file DepthwiseConvolutionLayer.cc.

287{
288 _input = input;
289 _kernel = kernel;
290 _bias = bias;
291 _paddingLeft = paddingLeft;
292 _paddingRight = paddingRight;
293 _paddingTop = paddingTop;
294 _paddingBottom = paddingBottom;
295 _strideWidth = strideWidth;
296 _strideHeight = strideHeight;
297 _multiplier = multiplier;
298 _dilationWidth = dilationWidth;
299 _dilationHeight = dilationHeight;
300 _activation = activation;
301 _output = output;
302 _external_context = external_context;
303 _is_hybrid = _input->data_type() == OperandType::FLOAT32 &&
304 _kernel->data_type() == OperandType::QUANT_INT8_SYMM;
305
306 if (_is_hybrid)
307 {
308 ensureQ8iHybridPerChannel();
309 prepareQ8iHybridPerChannel();
310 _prepared = true;
311 }
312 else if (_input->data_type() == OperandType::FLOAT32)
313 {
314 prepareF32();
315 }
316 else if (_input->data_type() == OperandType::QUANT_INT8_ASYMM)
317 {
319 {
320 prepareQ8i();
321 _prepared = true;
322 }
323 }
324 else if (_input->data_type() == OperandType::QUANT_UINT8_ASYMM && _kernel->is_constant() &&
326 {
327 const bool per_channel_quantized = _kernel->data_scales().size() > 1;
328 if (per_channel_quantized)
329 {
330 prepareQ8uPerChannel();
331 _prepared = true;
332 }
333 }
334}
const std::vector< float > & data_scales() const override final
ir::DataType data_type() const override final
bool is_dynamic() const override final
Return true if the tensor needs dynamic allocation, meaning that during compile-time the outpus shape...
bool is_constant() const override final
Return true if the tensor is constant.

References _activation, _bias, _dilationHeight, _dilationWidth, _input, _kernel, _multiplier, _output, _paddingBottom, _paddingLeft, _paddingRight, _paddingTop, _strideHeight, _strideWidth, onert::backend::IPortableTensor::data_scales(), onert::backend::IPortableTensor::data_type(), onert::backend::IPortableTensor::is_constant(), and onert::backend::IPortableTensor::is_dynamic().

◆ convFloat32()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::convFloat32 ( )

Definition at line 62 of file DepthwiseConvolutionLayer.cc.

63{
64 float output_activation_min = 0, output_activation_max = 0;
65 CalculateActivationRange(_activation, &output_activation_min, &output_activation_max);
66
68 op_params.stride_width = _strideWidth;
69 op_params.stride_height = _strideHeight;
74 op_params.depth_multiplier = _multiplier;
75 op_params.float_activation_min = output_activation_min;
76 op_params.float_activation_max = output_activation_max;
77
78 // Since DepthwiseConvOp does not support dilation and different W/H stride yet,
79 // it uses the existing kernel in this case.
81 {
82 nnfw::cker::DepthwiseConvOp(op_params, getShape(_input), getBuffer<float>(_input),
83 getShape(_kernel), getBuffer<float>(_kernel), getShape(_bias),
84 getBuffer<float>(_bias), getBuffer<float>(_padded_filter.get()),
85 _use_padded_filter, getBuffer<float>(_filter_buffers.get()),
86 getShape(_output), getBuffer<float>(_output));
87 }
88 else
89 {
90 nnfw::cker::DepthwiseConv<float, float>(
91 op_params, getShape(_input), getBuffer<float>(_input), getShape(_kernel),
92 getBuffer<float>(_kernel), getShape(_bias), getBuffer<float>(_bias), getShape(_output),
93 getBuffer<float>(_output), _external_context->ruy_context());
94 }
95}
void DepthwiseConvOp(const DepthwiseConvParams &params, const Shape &input_shape, const float *input_data, const Shape &filter_shape, const float *filter_data, const Shape &bias_shape, const float *bias_data, float *padded_filter_data, bool pad_filter, float *filter_buffers_data, const Shape &output_shape, float *output_data)
nnfw::cker::Shape getShape(const IPortableTensor *tensor)
void CalculateActivationRange(ir::Activation activation, T *activation_min, T *activation_max)
PaddingValues padding_values
Definition Types.h:234

References _activation, _bias, _dilationHeight, _dilationWidth, _filter_buffers, _input, _kernel, _multiplier, _output, _padded_filter, _paddingLeft, _paddingTop, _strideHeight, _strideWidth, _use_padded_filter, onert::util::CalculateActivationRange(), nnfw::cker::DepthwiseConvParams::depth_multiplier, nnfw::cker::DepthwiseConvOp(), nnfw::cker::DepthwiseConvParams::dilation_height_factor, nnfw::cker::DepthwiseConvParams::dilation_width_factor, nnfw::cker::DepthwiseConvParams::float_activation_max, nnfw::cker::DepthwiseConvParams::float_activation_min, onert::backend::cpu::ops::getShape(), nnfw::cker::PaddingValues::height, nnfw::cker::DepthwiseConvParams::padding_values, nnfw::cker::DepthwiseConvParams::stride_height, nnfw::cker::DepthwiseConvParams::stride_width, and nnfw::cker::PaddingValues::width.

Referenced by run().

◆ convQ8i()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::convQ8i ( )

Definition at line 160 of file DepthwiseConvolutionLayer.cc.

161{
162 if (!_prepared)
163 {
164 prepareQ8i();
165 _prepared = true;
166 }
167
168 int32_t output_activation_min = 0;
169 int32_t output_activation_max = 0;
171 &output_activation_max);
172
177 op_params.depth_multiplier = _multiplier;
178 op_params.stride_width = _strideWidth;
179 op_params.stride_height = _strideHeight;
182 op_params.input_offset = -_input->data_zero_point();
183 op_params.weights_offset = 0;
185 op_params.quantized_activation_min = output_activation_min;
186 op_params.quantized_activation_max = output_activation_max;
187
189 op_params, _per_channel_output_multiplier.data(), _per_channel_output_shift.data(),
190 getShape(_input), getBuffer<int8_t>(_input), getShape(_kernel), getBuffer<int8_t>(_kernel),
191 getShape(_bias), getBuffer<int32_t>(_bias), getShape(_output), getBuffer<int8_t>(_output),
192 _external_context->ruy_context());
193}
int32_t data_zero_point() const override final
void DepthwiseConvPerChannel(const DepthwiseConvParams &params, const int32_t *output_multiplier, const int32_t *output_shift, const Shape &input_shape, const int8_t *input_data, const Shape &filter_shape, const int8_t *filter_data, const Shape &bias_shape, const int32_t *bias_data, const Shape &output_shape, int8_t *output_data, ruy::Context *ruy_context)
void CalculateActivationRangeQuantized(ir::Activation activation, const IPortableTensor *output, int32_t *act_min, int32_t *act_max)

References _activation, _bias, _dilationHeight, _dilationWidth, _input, _kernel, _multiplier, _output, _paddingLeft, _paddingTop, _strideHeight, _strideWidth, onert::backend::cpu::ops::CalculateActivationRangeQuantized(), onert::backend::IPortableTensor::data_zero_point(), nnfw::cker::DepthwiseConvParams::depth_multiplier, nnfw::cker::optimized_integer_ops::DepthwiseConvPerChannel(), nnfw::cker::DepthwiseConvParams::dilation_height_factor, nnfw::cker::DepthwiseConvParams::dilation_width_factor, onert::backend::cpu::ops::getShape(), nnfw::cker::PaddingValues::height, nnfw::cker::DepthwiseConvParams::input_offset, nnfw::cker::kSame, nnfw::cker::DepthwiseConvParams::output_offset, nnfw::cker::DepthwiseConvParams::padding_type, nnfw::cker::DepthwiseConvParams::padding_values, nnfw::cker::DepthwiseConvParams::quantized_activation_max, nnfw::cker::DepthwiseConvParams::quantized_activation_min, nnfw::cker::DepthwiseConvParams::stride_height, nnfw::cker::DepthwiseConvParams::stride_width, nnfw::cker::DepthwiseConvParams::weights_offset, and nnfw::cker::PaddingValues::width.

Referenced by run().

◆ convQ8iHybridPerChannel()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::convQ8iHybridPerChannel ( )

Definition at line 195 of file DepthwiseConvolutionLayer.cc.

196{
197 if (!_prepared)
198 {
199 prepareQ8iHybridPerChannel();
200 _prepared = true;
201 }
202
203 float output_activation_min = 0, output_activation_max = 0;
204 CalculateActivationRange(_activation, &output_activation_min, &output_activation_max);
205
206 auto input_shape = getShape(_input);
207 const int batch_size = input_shape.Dims(0);
208 const int input_size = input_shape.FlatSize() / batch_size;
209
210 auto scaling_factors_ptr = _input_scaling_factors.data();
211 auto input_offsets_ptr = _input_offsets.data();
212
213 for (int b = 0; b < batch_size; ++b)
214 {
215 const int offset = b * input_size;
216 nnfw::cker::PortableAsymmetricQuantizeFloats(getBuffer<float>(_input) + offset, input_size,
217 _input_quantized.data() + offset,
218 &scaling_factors_ptr[b], &input_offsets_ptr[b]);
219 }
220
224 op_params.depth_multiplier = _multiplier;
225 op_params.stride_width = _strideWidth;
226 op_params.stride_height = _strideHeight;
229 op_params.float_activation_min = output_activation_min;
230 op_params.float_activation_max = output_activation_max;
231
233 op_params, _input_scaling_factors.data(), getShape(_input), _input_quantized.data(),
234 getShape(_kernel), getBuffer<int8_t>(_kernel), getShape(_bias), getBuffer<float>(_bias),
235 getShape(_output), getBuffer<float>(_output), _kernel->data_scales().data(),
236 _input_offsets.data());
237}
__global uchar * offset(const Image *img, int x, int y)
Definition helpers.h:540
void DepthwiseConvHybridPerChannel(const DepthwiseConvParams &params, float *scaling_factors_ptr, const Shape &input_shape, const int8_t *input_data, const Shape &filter_shape, const int8_t *filter_data, const Shape &bias_shape, const float *bias_data, const Shape &output_shape, float *output_data, const float *per_channel_scale, int32_t *input_offset)
void PortableAsymmetricQuantizeFloats(const float *values, const int size, int8_t *quantized_values, float *scaling_factor, int32_t *offset)

References _activation, _bias, _dilationHeight, _dilationWidth, _input, _kernel, _multiplier, _output, _paddingLeft, _paddingTop, _strideHeight, _strideWidth, onert::util::CalculateActivationRange(), onert::backend::IPortableTensor::data_scales(), nnfw::cker::DepthwiseConvParams::depth_multiplier, nnfw::cker::reference_integer_ops::DepthwiseConvHybridPerChannel(), nnfw::cker::DepthwiseConvParams::dilation_height_factor, nnfw::cker::DepthwiseConvParams::dilation_width_factor, nnfw::cker::DepthwiseConvParams::float_activation_max, nnfw::cker::DepthwiseConvParams::float_activation_min, onert::backend::cpu::ops::getShape(), nnfw::cker::PaddingValues::height, offset(), nnfw::cker::DepthwiseConvParams::padding_values, nnfw::cker::PortableAsymmetricQuantizeFloats(), nnfw::cker::DepthwiseConvParams::stride_height, nnfw::cker::DepthwiseConvParams::stride_width, and nnfw::cker::PaddingValues::width.

Referenced by run().

◆ convQ8uPerChannel()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::convQ8uPerChannel ( )

Definition at line 132 of file DepthwiseConvolutionLayer.cc.

133{
137 op_params.stride_width = _strideWidth;
138 op_params.stride_height = _strideHeight;
141 op_params.depth_multiplier = _multiplier;
142 op_params.input_offset = -_input->data_zero_point();
144 int32_t output_activation_min = 0;
145 int32_t output_activation_max = 0;
147 &output_activation_max);
148 op_params.quantized_activation_min = output_activation_min;
149 op_params.quantized_activation_max = output_activation_max;
150 // NOTE: The following fields of ConvParams are not used:
151 // padding_type, weights_offset, output_{multiplier,shift}, float_activation_{min,max}
152
154 op_params, _per_channel_output_multiplier.data(), _per_channel_output_shift.data(),
155 getShape(_input), getBuffer<uint8_t>(_input), getShape(_kernel), getBuffer<uint8_t>(_kernel),
156 _kernel->data_zero_points().data(), getShape(_bias), getBuffer<int32_t>(_bias),
157 getShape(_output), getBuffer<uint8_t>(_output));
158}
const std::vector< int32_t > & data_zero_points() const override
void DepthwiseConvPerChannel(const DepthwiseConvParams &params, const int32_t *output_multiplier, const int32_t *output_shift, const Shape &input_shape, const uint8_t *input_data, const Shape &filter_shape, const uint8_t *filter_data, const int32_t *filter_zeropoint, const Shape &bias_shape, const int32_t *bias_data, const Shape &output_shape, uint8_t *output_data)

References _activation, _bias, _dilationHeight, _dilationWidth, _input, _kernel, _multiplier, _output, _paddingLeft, _paddingTop, _strideHeight, _strideWidth, onert::backend::cpu::ops::CalculateActivationRangeQuantized(), onert::backend::IPortableTensor::data_zero_point(), onert::backend::IPortableTensor::data_zero_points(), nnfw::cker::DepthwiseConvParams::depth_multiplier, nnfw::cker::reference_integer_ops::DepthwiseConvPerChannel(), nnfw::cker::DepthwiseConvParams::dilation_height_factor, nnfw::cker::DepthwiseConvParams::dilation_width_factor, onert::backend::cpu::ops::getShape(), nnfw::cker::PaddingValues::height, nnfw::cker::DepthwiseConvParams::input_offset, nnfw::cker::DepthwiseConvParams::output_offset, nnfw::cker::DepthwiseConvParams::padding_values, nnfw::cker::DepthwiseConvParams::quantized_activation_max, nnfw::cker::DepthwiseConvParams::quantized_activation_min, nnfw::cker::DepthwiseConvParams::stride_height, nnfw::cker::DepthwiseConvParams::stride_width, and nnfw::cker::PaddingValues::width.

Referenced by run().

◆ convQ8uPerTensor()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::convQ8uPerTensor ( )

Definition at line 97 of file DepthwiseConvolutionLayer.cc.

98{
99 int32_t output_activation_min = 0;
100 int32_t output_activation_max = 0;
102 &output_activation_max);
103
104 double real_multiplier = 0.0;
105 int32_t output_multiplier = 0;
106 int32_t output_shift = 0;
108 QuantizeMultiplier(real_multiplier, &output_multiplier, &output_shift);
109
111 op_params.stride_width = _strideWidth;
112 op_params.stride_height = _strideHeight;
117 op_params.depth_multiplier = _multiplier;
118 op_params.input_offset = -_input->data_zero_point();
119 op_params.weights_offset = -_kernel->data_zero_point();
121 op_params.output_multiplier = output_multiplier;
122 op_params.output_shift = output_shift;
123 op_params.quantized_activation_min = output_activation_min;
124 op_params.quantized_activation_max = output_activation_max;
125
126 nnfw::cker::DepthwiseConv<uint8_t, int32_t>(
127 op_params, getShape(_input), getBuffer<uint8_t>(_input), getShape(_kernel),
128 getBuffer<uint8_t>(_kernel), getShape(_bias), getBuffer<int32_t>(_bias), getShape(_output),
129 getBuffer<uint8_t>(_output), _external_context->ruy_context());
130}
void QuantizeMultiplier(double double_multiplier, int32_t *quantized_multiplier, int *shift)
void GetQuantizedConvolutionMultiplier(const IPortableTensor *input, const IPortableTensor *filter, const IPortableTensor *bias, const IPortableTensor *output, double *multiplier)

References _activation, _bias, _dilationHeight, _dilationWidth, _input, _kernel, _multiplier, _output, _paddingLeft, _paddingTop, _strideHeight, _strideWidth, onert::backend::cpu::ops::CalculateActivationRangeQuantized(), onert::backend::IPortableTensor::data_zero_point(), nnfw::cker::DepthwiseConvParams::depth_multiplier, nnfw::cker::DepthwiseConvParams::dilation_height_factor, nnfw::cker::DepthwiseConvParams::dilation_width_factor, onert::backend::cpu::ops::GetQuantizedConvolutionMultiplier(), onert::backend::cpu::ops::getShape(), nnfw::cker::PaddingValues::height, nnfw::cker::DepthwiseConvParams::input_offset, nnfw::cker::DepthwiseConvParams::output_multiplier, nnfw::cker::DepthwiseConvParams::output_offset, nnfw::cker::DepthwiseConvParams::output_shift, nnfw::cker::DepthwiseConvParams::padding_values, nnfw::cker::DepthwiseConvParams::quantized_activation_max, nnfw::cker::DepthwiseConvParams::quantized_activation_min, onert::backend::cpu::ops::QuantizeMultiplier(), nnfw::cker::DepthwiseConvParams::stride_height, nnfw::cker::DepthwiseConvParams::stride_width, nnfw::cker::DepthwiseConvParams::weights_offset, and nnfw::cker::PaddingValues::width.

Referenced by run().

◆ run()

void onert::backend::cpu::ops::DepthwiseConvolutionLayer::run ( )
overridevirtual

Implements onert::exec::IFunction.

Definition at line 336 of file DepthwiseConvolutionLayer.cc.

337{
338 if (_is_hybrid)
339 {
341 }
342 else if (_input->data_type() == OperandType::FLOAT32)
343 {
344 convFloat32();
345 }
346 else if (_input->data_type() == OperandType::QUANT_UINT8_ASYMM)
347 {
348 const bool per_channel_quantized = _kernel->data_scales().size() > 1;
349 if (per_channel_quantized)
351 else
353 }
354 else if (_input->data_type() == OperandType::QUANT_INT8_ASYMM)
355 {
356 convQ8i();
357 }
358 else
359 {
360 throw std::runtime_error{"DepthwiseConv: unsupported data type"};
361 }
362}

References _input, _kernel, convFloat32(), convQ8i(), convQ8iHybridPerChannel(), convQ8uPerChannel(), convQ8uPerTensor(), onert::backend::IPortableTensor::data_scales(), and onert::backend::IPortableTensor::data_type().

Referenced by onert::backend::train::ops::DepthwiseConvolutionLayer::forward().

Field Documentation

◆ _activation

ir::Activation onert::backend::cpu::ops::DepthwiseConvolutionLayer::_activation {ir::Activation::NONE}
protected

◆ _bias

const IPortableTensor* onert::backend::cpu::ops::DepthwiseConvolutionLayer::_bias {nullptr}
protected

◆ _dilationHeight

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_dilationHeight {1}
protected

◆ _dilationWidth

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_dilationWidth {1}
protected

◆ _filter_buffers

std::unique_ptr<Tensor> onert::backend::cpu::ops::DepthwiseConvolutionLayer::_filter_buffers {nullptr}
protected

Definition at line 84 of file DepthwiseConvolutionLayer.h.

84{nullptr};

Referenced by convFloat32().

◆ _input

const IPortableTensor* onert::backend::cpu::ops::DepthwiseConvolutionLayer::_input {nullptr}
protected

◆ _kernel

const IPortableTensor* onert::backend::cpu::ops::DepthwiseConvolutionLayer::_kernel {nullptr}
protected

◆ _multiplier

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_multiplier {0}
protected

◆ _output

IPortableTensor* onert::backend::cpu::ops::DepthwiseConvolutionLayer::_output {nullptr}
protected

◆ _padded_filter

std::unique_ptr<Tensor> onert::backend::cpu::ops::DepthwiseConvolutionLayer::_padded_filter {nullptr}
protected

Definition at line 83 of file DepthwiseConvolutionLayer.h.

83{nullptr};

Referenced by convFloat32().

◆ _paddingBottom

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_paddingBottom {0}
protected

Definition at line 70 of file DepthwiseConvolutionLayer.h.

70{0};

Referenced by configure().

◆ _paddingLeft

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_paddingLeft {0}
protected

◆ _paddingRight

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_paddingRight {0}
protected

Definition at line 69 of file DepthwiseConvolutionLayer.h.

69{0};

Referenced by configure().

◆ _paddingTop

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_paddingTop {0}
protected

◆ _strideHeight

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_strideHeight {0}
protected

◆ _strideWidth

uint32_t onert::backend::cpu::ops::DepthwiseConvolutionLayer::_strideWidth {0}
protected

◆ _use_padded_filter

bool onert::backend::cpu::ops::DepthwiseConvolutionLayer::_use_padded_filter {false}
protected

Definition at line 82 of file DepthwiseConvolutionLayer.h.

82{false};

Referenced by convFloat32().


The documentation for this class was generated from the following files: