|
ONE - On-device Neural Engine
|
#include <GradientApplier.h>

Public Member Functions | |
| GradientApplier () | |
| ~GradientApplier ()=default | |
| void | configure (const exec::train::optimizer::Optimizer *optimizer, const IPortableTensor *gradient, ITrainableTensor *trainable) |
| void | applyGradient (uint32_t training_step) override |
| Apply gradients to a trainable tensor. | |
Public Member Functions inherited from onert::exec::train::IGradientApplier | |
| virtual | ~IGradientApplier ()=default |
Definition at line 27 of file GradientApplier.h.
| onert::backend::train::ops::GradientApplier::GradientApplier | ( | ) |
Definition at line 24 of file GradientApplier.cc.
|
default |
|
overridevirtual |
Apply gradients to a trainable tensor.
| training_step | The number of iterations of the training process. |
Implements onert::exec::train::IGradientApplier.
Definition at line 37 of file GradientApplier.cc.
References onert::exec::train::optimizer::Optimizer::applyGradient().
| void onert::backend::train::ops::GradientApplier::configure | ( | const exec::train::optimizer::Optimizer * | optimizer, |
| const IPortableTensor * | gradient, | ||
| ITrainableTensor * | trainable | ||
| ) |
Definition at line 29 of file GradientApplier.cc.