ONE - On-device Neural Engine
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
loco::PaddingND Class Referencefinal

#include <PaddingND.h>

Public Member Functions

const uint32_t & front (uint32_t dim) const
 
uint32_t & front (uint32_t dim)
 
const uint32_t & back (uint32_t dim) const
 
uint32_t & back (uint32_t dim)
 
uint32_t rank (void) const
 
void rank (uint32_t s)
 

Detailed Description

This class indicates how many pads to add before(front) and after(back) the contents of tensor in that dimension.

Definition at line 30 of file PaddingND.h.

Member Function Documentation

◆ back() [1/2]

uint32_t & loco::PaddingND::back ( uint32_t  dim)
inline

Definition at line 39 of file PaddingND.h.

39{ return _back.at(dim); }

◆ back() [2/2]

const uint32_t & loco::PaddingND::back ( uint32_t  dim) const
inline

Definition at line 38 of file PaddingND.h.

38{ return _back.at(dim); }

◆ front() [1/2]

uint32_t & loco::PaddingND::front ( uint32_t  dim)
inline

Definition at line 35 of file PaddingND.h.

35{ return _front.at(dim); }

◆ front() [2/2]

const uint32_t & loco::PaddingND::front ( uint32_t  dim) const
inline

Definition at line 34 of file PaddingND.h.

34{ return _front.at(dim); }

◆ rank() [1/2]

void loco::PaddingND::rank ( uint32_t  s)
inline

Definition at line 43 of file PaddingND.h.

44 {
45 _front.resize(s);
46 _back.resize(s);
47 }

◆ rank() [2/2]

uint32_t loco::PaddingND::rank ( void  ) const
inline

Definition at line 42 of file PaddingND.h.

42{ return _front.size(); }

The documentation for this class was generated from the following file: