ONE - On-device Neural Engine
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
ConvolutionLayer.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2023 Samsung Electronics Co., Ltd. All Rights Reserved
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef __ONERT_BACKEND_TRAIN_OPS_CONVOLUTIONLAYER_H__
18#define __ONERT_BACKEND_TRAIN_OPS_CONVOLUTIONLAYER_H__
19
20#include <ops/ConvolutionLayer.h>
21
22#include "../Tensor.h"
24
26{
27
30{
31public:
34
35 void configureBackward(const IPortableTensor *weights, IPortableTensor *back_prop_input,
36 IPortableTensor *grad_weights, IPortableTensor *grad_bias,
37 const IPortableTensor *back_prop_output, const ir::Activation activation);
38 void forward(bool training) override;
39 void backward() override;
40
41private:
42 void backwardFloat32();
43
44private:
45 IPortableTensor *_grad_weights;
46 IPortableTensor *_grad_bias;
47 IPortableTensor *_back_prop_input;
48 const IPortableTensor *_back_prop_output;
49
50 // TODO Consider if these tensors should be built in TensorBuilder
51 std::unique_ptr<Tensor> _transposed_weights;
52 std::unique_ptr<BackPropTensor> _conv_back_prop_output;
53 std::unique_ptr<BackPropTensor> _act_back_prop_output;
54 std::unique_ptr<GradientTensor> _transposed_grad_weights;
55};
56
57} // namespace onert::backend::train::ops
58
59#endif // __ONERT_BACKEND_TRAIN_OPS_CONVOLUTIONLAYER_H__
A tensor class that is portable for other backends.
void configureBackward(const IPortableTensor *weights, IPortableTensor *back_prop_input, IPortableTensor *grad_weights, IPortableTensor *grad_bias, const IPortableTensor *back_prop_output, const ir::Activation activation)