19#include <ruy/context.h>
25 const std::vector<ITensor *> &dst_tensors,
26 const std::vector<ir::PermuteType> &types,
27 const std::shared_ptr<ExternalContext> &external_context)
28 : _external_context{external_context}, _tasks_map{}
30 assert(src_tensors.size() == dst_tensors.size());
31 assert(src_tensors.size() == types.size());
50 if ((*src_it == *dst_it) || (*src_it ==
nullptr || *dst_it ==
nullptr))
62 src_offsets_it->resize(0);
63 dst_offsets_it->resize(0);
64 const auto permute_type = *type_it;
85 const auto num_elements =
src_tensor.getShape().num_elements();
86 const int thread_count =
87 _external_context->ruy_context()->max_num_threads() <
static_cast<int>(num_elements)
88 ? _external_context->ruy_context()->max_num_threads()
91 std::vector<PermuteWorkerTask> tasks;
93 for (
auto i = 0; i < thread_count; ++i)
95 int end = start + (num_elements - start) / (thread_count - i);
97 start * data_size, (end - start) * data_size);
100 assert(tasks.size() >= 1);
101 _tasks_map[src] = std::move(tasks);
107 auto copy_axis = loop_shape.rank() - 1;
108 copy_axis = copy_axis < 0 ? 1 : copy_axis;
109 const auto copy_len = loop_shape.dim(copy_axis) * data_size;
110 loop_shape.dim(copy_axis) = 1;
112 appendPermuteTasks(src, dst, loop_shape, copy_len, permute_type);
120 const auto loop_shape =
src_tensor.getShape();
121 const auto copy_len = data_size;
123 appendPermuteTasks(src, dst, loop_shape, copy_len, permute_type);
136 size_t distributed_dim = 0;
140 for (
int i = 1; i < src_shape.rank() - 1; ++i)
142 distributed_dim = src_shape.dim(distributed_dim) < src_shape.dim(i) ? i : distributed_dim;
145 const auto distributed_dim_val = src_shape.dim(distributed_dim);
146 const int thread_count =
147 _external_context->ruy_context()->max_num_threads() <
static_cast<int>(distributed_dim_val)
148 ? _external_context->ruy_context()->max_num_threads()
149 : distributed_dim_val;
152 assert(thread_count <= _external_context->ruy_context()->max_num_threads());
154 std::vector<PermuteWorkerTask> tasks;
156 auto one_thread_loop_shape = loop_shape;
157 for (
auto i = 0; i < thread_count; ++i)
160 start_coords.set(distributed_dim, start);
161 int end = start + (distributed_dim_val - start) / (thread_count - i);
162 one_thread_loop_shape.dim(distributed_dim) = end - start;
167 assert(tasks.size() >= 1);
171void PermuteLayer::runPermuteTasks(backend::ITensor *src, uint8_t *dst_buffer)
175 std::vector<PermuteWorkerTask> &tasks = _tasks_map.at(src);
176 for (
size_t i = 0; i < tasks.size(); ++i)
178 tasks.at(i).setBuffers(src->buffer(), dst_buffer);
180 assert(tasks.size() >= 1);
181 _external_context->ruy_context()->mutable_thread_pool()->Execute(tasks.size(), tasks.data());
212 throw std::runtime_error{
213 "Error: PermuteLayer: output's TensorManager does not support dynamic tensor"};
216 catch (
const std::out_of_range &e)
218 std::cerr <<
"Error: out_of_range in PermuteLayer: output's TensorManager does not support "
238 auto &src_offsets = *src_offsets_it;
239 auto &dst_offsets = *dst_offsets_it;
240 auto permute_type = *type_it;
242 if (src->total_size() == 0)
244 assert(dst->total_size() == 0);
255 if (_tasks_map.find(src) == _tasks_map.end() || _tasks_map.at(src).size() == 1 ||
256 src->is_dynamic() || dst->is_dynamic() ||
259 permute(src, dst, src->getShape().rank(), src_offsets, dst_offsets, permute_type);
262 else if (dst->needMemoryMap() && !dst->is_subtensor())
267 src->access([&](
backend::ITensor &) { dst->enqueueWriteBuffer(src->buffer(),
false); });
276 dst->enqueueWriteBuffer(dst_buffer,
false);
279 else if (src->needMemoryMap() && !src->is_subtensor() && !src->has_padding() &&
283 assert(!dst->needMemoryMap());
284 dst->access([&](
backend::ITensor &) { src->enqueueReadBuffer(dst->buffer(),
true); });
289 dst->access([&](
backend::ITensor &) { runPermuteTasks(src, dst->buffer()); });
PermuteLayer(const std::vector< ITensor * > &src_tensors, const std::vector< ITensor * > &dst_tensors, const std::vector< ir::PermuteType > &types, const std::shared_ptr< ExternalContext > &external_context)
std::vector< std::vector< size_t > > _dst_tensors_offsets
std::unordered_map< const backend::ITensor *, std::vector< uint8_t > > _buffers_map
std::vector< ir::PermuteType > _permute_types
void permute(backend::ITensor *src_tensor, backend::ITensor *dst_tensor, size_t rank, std::vector< size_t > &src_offsets, std::vector< size_t > &dst_offsets, const ir::PermuteType &permute_type)
const std::type_info & underlying_type(ir::DataType type) const
std::vector< std::vector< size_t > > _src_tensors_offsets
std::vector< backend::ITensor * > _src_tensors
std::vector< backend::ITensor * > _dst_tensors
Class to represent position(offset) of tensor. Assume that the front is higher dimensional....
size_t sizeOfDataType(DataType data_type)
Shape convertShape(const Shape &shape, const PermuteType &type)
Converts shape when its rank is 4.