ONE - On-device Neural Engine
Loading...
Searching...
No Matches
onert::backend::builtin::kernel::PermuteLayer Class Reference

#include <PermuteLayer.h>

Collaboration diagram for onert::backend::builtin::kernel::PermuteLayer:

Public Member Functions

 PermuteLayer (const std::vector< ITensor * > &src_tensors, const std::vector< ITensor * > &dst_tensors, const std::vector< ir::PermuteType > &types, const std::shared_ptr< ExternalContext > &external_context)
 
void optimize () override
 
void run () override
 
- Public Member Functions inherited from onert::exec::IPermuteFunction
virtual void prepare () override
 
- Public Member Functions inherited from onert::exec::IFunction
virtual ~IFunction ()=default
 

Additional Inherited Members

- Protected Member Functions inherited from onert::exec::IPermuteFunction
void permute (backend::ITensor *src_tensor, backend::ITensor *dst_tensor, size_t rank, std::vector< size_t > &src_offsets, std::vector< size_t > &dst_offsets, const ir::PermuteType &permute_type)
 
const std::type_info & underlying_type (ir::DataType type) const
 
- Protected Attributes inherited from onert::exec::IPermuteFunction
std::vector< backend::ITensor * > _src_tensors
 
std::vector< backend::ITensor * > _dst_tensors
 
std::vector< std::vector< size_t > > _src_tensors_offsets
 
std::vector< std::vector< size_t > > _dst_tensors_offsets
 
std::vector< ir::PermuteType_permute_types
 
std::unordered_map< const backend::ITensor *, std::vector< uint8_t > > _buffers_map
 

Detailed Description

Definition at line 28 of file PermuteLayer.h.

Constructor & Destructor Documentation

◆ PermuteLayer()

onert::backend::builtin::kernel::PermuteLayer::PermuteLayer ( const std::vector< ITensor * > &  src_tensors,
const std::vector< ITensor * > &  dst_tensors,
const std::vector< ir::PermuteType > &  types,
const std::shared_ptr< ExternalContext > &  external_context 
)

Definition at line 24 of file PermuteLayer.cc.

28 : _external_context{external_context}, _tasks_map{}
29{
30 assert(src_tensors.size() == dst_tensors.size());
31 assert(src_tensors.size() == types.size());
32 _src_tensors = src_tensors;
33 _dst_tensors = dst_tensors;
34 _permute_types = types;
35 _src_tensors_offsets.resize(src_tensors.size());
36 _dst_tensors_offsets.resize(dst_tensors.size());
37 _permute_types.resize(src_tensors.size());
38}
std::vector< std::vector< size_t > > _dst_tensors_offsets
std::vector< ir::PermuteType > _permute_types
std::vector< std::vector< size_t > > _src_tensors_offsets
std::vector< backend::ITensor * > _src_tensors
std::vector< backend::ITensor * > _dst_tensors

References onert::exec::IPermuteFunction::_dst_tensors, onert::exec::IPermuteFunction::_dst_tensors_offsets, onert::exec::IPermuteFunction::_permute_types, onert::exec::IPermuteFunction::_src_tensors, and onert::exec::IPermuteFunction::_src_tensors_offsets.

Member Function Documentation

◆ optimize()

void onert::backend::builtin::kernel::PermuteLayer::optimize ( )
overridevirtual

Implements onert::exec::IPermuteFunction.

Reimplemented in onert::backend::builtin::train::kernel::PermuteLayer.

Definition at line 40 of file PermuteLayer.cc.

41{
42 // Remove copying of tensor as nullptr
43 auto src_it = _src_tensors.begin();
44 auto dst_it = _dst_tensors.begin();
45 auto src_offsets_it = _src_tensors_offsets.begin();
46 auto dst_offsets_it = _dst_tensors_offsets.begin();
47 auto type_it = _permute_types.begin();
48 while (src_it != _src_tensors.end())
49 {
50 if ((*src_it == *dst_it) || (*src_it == nullptr || *dst_it == nullptr))
51 {
52 src_it = _src_tensors.erase(src_it);
53 dst_it = _dst_tensors.erase(dst_it);
54 src_offsets_it = _src_tensors_offsets.erase(src_offsets_it);
55 dst_offsets_it = _dst_tensors_offsets.erase(dst_offsets_it);
56 type_it = _permute_types.erase(type_it);
57 }
58 else
59 {
60 auto src = *src_it;
61 auto dst = *dst_it;
62 src_offsets_it->resize(0);
63 dst_offsets_it->resize(0);
64 const auto permute_type = *type_it;
65
66 src_it++;
67 dst_it++;
68 src_offsets_it++;
69 dst_offsets_it++;
70 type_it++;
71
72 if (underlying_type(src->data_type()) != underlying_type(dst->data_type()))
73 continue;
74
75 // TODO Support different types
76 auto fn = [&](backend::ITensor &src_tensor) {
77 dst->access([&](backend::ITensor &dst_tensor) {
78 // NOTE The buffer of both tensor can be nullptr in this step
79 const auto data_size = ir::sizeOfDataType(src_tensor.data_type());
80
81 if (permute_type == ir::PermuteType::SAME)
82 {
83 if ((!src_tensor.has_padding() && !dst_tensor.has_padding()))
84 {
85 const auto num_elements = src_tensor.getShape().num_elements();
86 const int thread_count =
87 _external_context->ruy_context()->max_num_threads() < static_cast<int>(num_elements)
88 ? _external_context->ruy_context()->max_num_threads()
90
91 std::vector<PermuteWorkerTask> tasks;
92 auto start = 0;
93 for (auto i = 0; i < thread_count; ++i)
94 {
95 int end = start + (num_elements - start) / (thread_count - i);
96 tasks.emplace_back(src_tensor.buffer(), dst_tensor.buffer(), start * data_size,
97 start * data_size, (end - start) * data_size);
98 start = end;
99 }
100 assert(tasks.size() >= 1);
101 _tasks_map[src] = std::move(tasks);
102 }
103 else
104 {
105 auto loop_shape = src_tensor.getShape();
106
107 auto copy_axis = loop_shape.rank() - 1;
108 copy_axis = copy_axis < 0 ? 1 : copy_axis;
109 const auto copy_len = loop_shape.dim(copy_axis) * data_size;
110 loop_shape.dim(copy_axis) = 1;
111
112 appendPermuteTasks(src, dst, loop_shape, copy_len, permute_type);
113 }
114 }
115 else
116 {
117 assert(src_tensor.getShape().rank() == 4 &&
118 (permute_type == ir::PermuteType::NHWC_TO_NCHW ||
119 permute_type == ir::PermuteType::NCHW_TO_NHWC));
120 const auto loop_shape = src_tensor.getShape();
121 const auto copy_len = data_size;
122
123 appendPermuteTasks(src, dst, loop_shape, copy_len, permute_type);
124 }
125 });
126 };
127 src->access(fn);
128 }
129 }
130}
const std::type_info & underlying_type(ir::DataType type) const
uint32_t num_elements(const Shape &shape)
The number of elements of a feature map of a given shape.
Definition Shape.h:59
ShapeIterator end(const Shape &s)
size_t sizeOfDataType(DataType data_type)
Definition DataType.cc:27
CLTensor src_tensor
CLTensor dst_tensor

References onert::exec::IPermuteFunction::_dst_tensors, onert::exec::IPermuteFunction::_dst_tensors_offsets, onert::exec::IPermuteFunction::_permute_types, onert::exec::IPermuteFunction::_src_tensors, onert::exec::IPermuteFunction::_src_tensors_offsets, dst_tensor, onert::ir::NCHW_TO_NHWC, onert::ir::NHWC_TO_NCHW, onert::ir::SAME, onert::ir::sizeOfDataType(), src_tensor, and onert::exec::IPermuteFunction::underlying_type().

Referenced by onert::backend::builtin::train::kernel::PermuteLayer::optimize().

◆ run()

void onert::backend::builtin::kernel::PermuteLayer::run ( )
overridevirtual

Reimplemented from onert::exec::IPermuteFunction.

Definition at line 184 of file PermuteLayer.cc.

185{
186 assert(_src_tensors.size() == _dst_tensors.size());
187 // PermuteLayer infers dynamic shape inside itself whenever run is called for the following
188 // reasons:
189 // 1. PermuteLayer has to access dynamic tensor manager for input/output tensors of other backends
190 // 2. Other controlflow operation(If/While) uses this layout for copying tensors of other
191 // subgraphs(with other backends)
192 // 3. This infering code is placed here to avoid duplicated code that can be caused by above 2
193 // reasons
194
195 // check if output is not dynamic
196 for (size_t i = 0; i < _src_tensors.size(); ++i)
197 {
198 auto dst_tensor = _dst_tensors.at(i);
199 auto src_tensor = _src_tensors.at(i);
200 auto permute_type = _permute_types.at(i);
201 if (src_tensor->is_dynamic() || dst_tensor->is_dynamic())
202 {
203 // getting output shape
204 auto src_shape = src_tensor->getShape();
205
206 // set output shape and output buffer
207 ir::Shape new_shape = ir::convertShape(src_shape, permute_type);
208
209 try
210 {
211 if (!dst_tensor->applyShape(new_shape))
212 throw std::runtime_error{
213 "Error: PermuteLayer: output's TensorManager does not support dynamic tensor"};
214 assert(dst_tensor->buffer() != nullptr);
215 }
216 catch (const std::out_of_range &e)
217 {
218 std::cerr << "Error: out_of_range in PermuteLayer: output's TensorManager does not support "
219 "dynamic tensor"
220 << '\n';
221 throw;
222 }
223 }
224 assert(ir::convertShape(src_tensor->getShape(), permute_type) == dst_tensor->getShape());
225 }
226 assert(_src_tensors.size() == _dst_tensors.size());
227 assert(_src_tensors.size() == _src_tensors_offsets.size());
228 assert(_dst_tensors.size() == _dst_tensors_offsets.size());
229 auto src_it = _src_tensors.begin();
230 auto dst_it = _dst_tensors.begin();
231 auto src_offsets_it = _src_tensors_offsets.begin();
232 auto dst_offsets_it = _dst_tensors_offsets.begin();
233 auto type_it = _permute_types.begin();
234 while (src_it != _src_tensors.end())
235 {
236 auto src = *src_it;
237 auto dst = *dst_it;
238 auto &src_offsets = *src_offsets_it;
239 auto &dst_offsets = *dst_offsets_it;
240 auto permute_type = *type_it;
241
242 if (src->total_size() == 0)
243 {
244 assert(dst->total_size() == 0);
245 }
246 else
247 {
248 if (src != dst)
249 {
250 // Conditions to run permutation with multithreading
251 // 1. The tasks for multithreathing was created
252 // 2. The tasks's size > 1
253 // 3. Both tensors are not dynamic
254 // 4. Data types of both tensors are different
255 if (_tasks_map.find(src) == _tasks_map.end() || _tasks_map.at(src).size() == 1 ||
256 src->is_dynamic() || dst->is_dynamic() ||
257 underlying_type(src->data_type()) != underlying_type(dst->data_type()))
258 {
259 permute(src, dst, src->getShape().rank(), src_offsets, dst_offsets, permute_type);
260 }
261 // If dst is subtensor, we have to use clEnqueueMapBuffer instead of clEnqueueWirteBuffer
262 else if (dst->needMemoryMap() && !dst->is_subtensor())
263 {
264 if (!src->has_padding() && !dst->has_padding() && permute_type == ir::PermuteType::SAME)
265 {
266 // This is more effective than multi-threading
267 src->access([&](backend::ITensor &) { dst->enqueueWriteBuffer(src->buffer(), false); });
268 }
269 else
270 {
271 // TODO Optimize this block in case of that padding size of dst is big.
272 _buffers_map[dst].reserve(dst->total_size());
273 auto dst_buffer = _buffers_map[dst].data();
274
275 src->access([&](backend::ITensor &) { runPermuteTasks(src, dst_buffer); });
276 dst->enqueueWriteBuffer(dst_buffer, false);
277 }
278 }
279 else if (src->needMemoryMap() && !src->is_subtensor() && !src->has_padding() &&
280 !dst->has_padding() && permute_type == ir::PermuteType::SAME)
281 {
282 // This is more effective than multi-threading
283 assert(!dst->needMemoryMap());
284 dst->access([&](backend::ITensor &) { src->enqueueReadBuffer(dst->buffer(), true); });
285 }
286 else
287 {
288 auto fn = [&](backend::ITensor &) {
289 dst->access([&](backend::ITensor &) { runPermuteTasks(src, dst->buffer()); });
290 };
291 src->access(fn);
292 }
293 }
294 }
295 src_it++;
296 dst_it++;
297 src_offsets_it++;
298 dst_offsets_it++;
299 type_it++;
300 }
301}
std::unordered_map< const backend::ITensor *, std::vector< uint8_t > > _buffers_map
void permute(backend::ITensor *src_tensor, backend::ITensor *dst_tensor, size_t rank, std::vector< size_t > &src_offsets, std::vector< size_t > &dst_offsets, const ir::PermuteType &permute_type)
Shape convertShape(const Shape &shape, const PermuteType &type)
Converts shape when its rank is 4.
Definition Shape.cc:62

References onert::exec::IPermuteFunction::_buffers_map, onert::exec::IPermuteFunction::_dst_tensors, onert::exec::IPermuteFunction::_dst_tensors_offsets, onert::exec::IPermuteFunction::_permute_types, onert::exec::IPermuteFunction::_src_tensors, onert::exec::IPermuteFunction::_src_tensors_offsets, onert::ir::convertShape(), dst_tensor, onert::exec::IPermuteFunction::permute(), onert::ir::SAME, src_tensor, and onert::exec::IPermuteFunction::underlying_type().

Referenced by onert::backend::builtin::train::kernel::PermuteLayer::forward().


The documentation for this class was generated from the following files: