ONE - On-device Neural Engine
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
SplitV.cpp
Go to the documentation of this file.
1/*
2 * Copyright (c) 2021 Samsung Electronics Co., Ltd. All Rights Reserved
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "SplitV.h"
18
19#include "Utils.h"
20
21#include <tensorflow/lite/kernels/internal/optimized/optimized_ops.h>
22
23namespace luci_interpreter
24{
25namespace kernels
26{
27
28SplitV::SplitV(const Tensor *input, const Tensor *size_splits, const Tensor *axis,
29 std::vector<Tensor *> outputs)
30 : Kernel({input, size_splits, axis}, std::move(outputs))
31{
32}
33
35{
36 assert(axis()->shape().num_elements() == 1);
37 _axis_value = getTensorData<int32_t>(axis())[0];
38 if (_axis_value < 0)
39 _axis_value += input()->shape().num_dims();
40 assert(_axis_value >= 0 && _axis_value < input()->shape().num_dims());
41
42 auto num_split = static_cast<int32_t>(_outputs.size());
43 auto sizes_data = getTensorData<int32_t>(size_splits());
44
45 assert(size_splits()->shape().num_dims() == 1);
46
47 int32_t sum = 0;
48 const auto num_dims_size_spits = size_splits()->shape().dim(0);
49 int32_t count_neg_dim = 0;
50
51 for (int32_t i = 0; i < num_dims_size_spits - 1; ++i)
52 {
53 if (sizes_data[i] != -1)
54 {
55 sum += sizes_data[i];
56 }
57 else
58 {
59 count_neg_dim++;
60 }
61 }
62 assert(count_neg_dim < 2);
63 assert(size_splits()->shape().num_elements() == num_split);
64
65 auto output_shape = input()->shape();
66 for (int32_t i = 0; i < num_split; ++i)
67 {
68 if (sizes_data[i] == -1)
69 {
70 output_shape.dim(_axis_value) = input()->shape().dim(_axis_value) - sum;
71 }
72 else
73 {
74 output_shape.dim(_axis_value) = sizes_data[i];
75 }
77 }
78}
79
80void SplitV::execute() const
81{
82 tflite::SplitParams params{};
83 params.num_split = _outputs.size();
84 params.axis = _axis_value;
85
86#define TF_LITE_SPLIT(scalar) \
87 { \
88 VectorOfTensors<scalar, false> all_outputs(_outputs); \
89 tflite::optimized_ops::Split(params, getTensorShape(input()), getTensorData<scalar>(input()), \
90 all_outputs.shapes(), all_outputs.data()); \
91 }
92
93 switch (input()->element_type())
94 {
95 case DataType::FLOAT32:
96 TF_LITE_SPLIT(float);
97 break;
98 case DataType::U8:
99 TF_LITE_SPLIT(uint8_t);
100 break;
101 case DataType::S16:
102 TF_LITE_SPLIT(int16_t);
103 break;
104 default:
105 throw std::runtime_error("luci-intp SplitV Unsupported type.");
106 }
107#undef TF_LITE_SPLIT
108}
109
110} // namespace kernels
111} // namespace luci_interpreter
const std::vector< Tensor * > _outputs
Definition Kernel.h:53
void resize(int dimensions_count)
Definition Tensor.h:121
int32_t dim(int i) const
Definition Tensor.h:41
int num_dims() const
Definition Tensor.h:39
const Shape & shape() const
Definition Tensor.h:107
const Tensor * axis() const
Definition SplitV.h:36
SplitV(const Tensor *input, const Tensor *size_splits, const Tensor *axis, std::vector< Tensor * > outputs)
Definition SplitV.cpp:28
void execute() const override
Definition SplitV.cpp:80
const Tensor * size_splits() const
Definition SplitV.h:35
const Tensor * input() const
Definition SplitV.h:34
#define TF_LITE_SPLIT(scalar)
const luci_interpreter::RuntimeShape output_shape