97{
99
100 const uint32_t subgraph_size = reader.num_subgraph();
101
102 for (uint32_t g = 0;
g < subgraph_size;
g++)
103 {
104 reader.select_subgraph(g);
105 auto ops = reader.operators();
106
107
108 for (uint32_t i = 0; i <
ops->size(); ++i)
109 {
110 const auto op =
ops->Get(i);
111 auto bc = reader.builtin_code(op);
112
113 if (bc == tflite::BuiltinOperator_CONV_2D || bc == tflite::BuiltinOperator_DEPTHWISE_CONV_2D)
114 {
117 {
118 throw std::runtime_error("Operator has invalid input");
119 }
120 auto weight_input =
inputs[1];
121
122 const auto op_weight = operator_match_output(reader, weight_input);
123 const auto buffer_size = tensor_buffer_size(reader, weight_input);
124
125 std::string weight_op_name = "?";
126
127 if (op_weight == nullptr && buffer_size > 0)
128 {
129 weight_op_name = "CONST";
130 }
131 else if (op_weight != nullptr)
132 {
133 weight_op_name = reader.opcode_name(op_weight);
134 }
135
136 auto op_name = reader.opcode_name(op);
137 os << op_name << "," << weight_op_name << std::endl;
138 }
139 }
140 }
141}
Loads TF lite file and provides helpers to access attributes.
std::vector< T > as_index_vector(const flatbuffers::Vector< T > *flat_array)