ONE - On-device Neural Engine
Loading...
Searching...
No Matches
SquaredDifference.cpp
Go to the documentation of this file.
1/*
2 * Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "OMStatus.h"
18
19#include "core/OMUtils.h"
20#include "core/OMRuntimeShape.h"
21
22#include "execute/OMUtils.h"
25
26#include "PALSquaredDifference.h"
27
28using namespace onert_micro;
29using namespace onert_micro::execute;
30
31namespace
32{
33
34constexpr uint32_t numInput = 2;
35constexpr uint32_t numOutput = 1;
36
37constexpr uint32_t input1TensorIdx = 0;
38constexpr uint32_t input2TensorIdx = 1;
39constexpr uint32_t outputTensorIdx = 0;
40
41} // namespace
42
43namespace onert_micro
44{
45namespace execute
46{
47
48// NOTE: doesnt currently support dynamic shapes
49// TODO: reduce code duplication with Add, Mul
51{
52 core::OMRuntimeContext &runtime_context = execute_args.runtime_context;
53 core::OMRuntimeStorage &runtime_storage = execute_args.runtime_storage;
54 uint16_t op_index = execute_args.kernel_index;
55
56 const circle::Tensor *input1;
57 const circle::Tensor *input2;
58 const circle::Tensor *output;
59
60 uint8_t *input1_data;
61 uint8_t *input2_data;
62 uint8_t *output_data;
63
64 // Read kernel
65 {
66 execute::OMRuntimeKernel runtime_kernel;
67 runtime_kernel.readKernel(op_index, runtime_context);
68
69 input1 = runtime_kernel.inputs[input1TensorIdx];
70 input2 = runtime_kernel.inputs[input2TensorIdx];
71 output = runtime_kernel.outputs[outputTensorIdx];
72 assert(input1 != nullptr);
73 assert(input2 != nullptr);
74 assert(output != nullptr);
75
76 runtime_kernel.getDataFromStorage(op_index, runtime_storage, runtime_context);
77
78 input1_data = runtime_kernel.inputs_data[input1TensorIdx];
79 input2_data = runtime_kernel.inputs_data[input2TensorIdx];
80 output_data = runtime_kernel.outputs_data[outputTensorIdx];
81 assert(input1_data != nullptr);
82 assert(input2_data != nullptr);
83 assert(output_data != nullptr);
84 }
85
86 OMStatus status;
87
88 core::OMRuntimeShape input1_shape(input1);
89 core::OMRuntimeShape input2_shape(input2);
91
93 const bool need_broadcast = pal::processBroadcastShapes(input1_shape, input2_shape, &params);
94
95 switch (input1->type())
96 {
97#ifndef DIS_FLOAT
98 case circle::TensorType_FLOAT32:
99 {
101 circle::ActivationFunctionType::ActivationFunctionType_NONE, &params.float_activation_min,
102 &params.float_activation_max);
103 if (need_broadcast)
104 {
106 params, input1_shape, core::utils::castInputData<float>(input1_data), input2_shape,
107 core::utils::castInputData<float>(input2_data), output_shape,
108 core::utils::castOutputData<float>(output_data));
109 }
110 else
111 {
112 status = pal::SquaredDifference(params, input1_shape.flatSize(),
113 core::utils::castInputData<float>(input1_data),
114 core::utils::castInputData<float>(input2_data),
115 core::utils::castOutputData<float>(output_data));
116 }
117 }
118 break;
119#endif // DIS_FLOAT
120#ifndef DIS_QUANT
121 case circle::TensorType_INT8:
122 {
123 // TODO support CWQ
124
126 circle::ActivationFunctionType::ActivationFunctionType_NONE, &params.float_activation_min,
127 &params.float_activation_max);
128
130 (*input1->quantization()->scale())[0],
131 static_cast<int32_t>((*input1->quantization()->zero_point())[0])};
133 (*input2->quantization()->scale())[0],
134 static_cast<int32_t>((*input2->quantization()->zero_point())[0])};
136 (*output->quantization()->scale())[0],
137 static_cast<int32_t>((*output->quantization()->zero_point())[0])};
138
139 if (need_broadcast)
140 {
142 params, input1_shape, in1_qparams, core::utils::castInputData<int8_t>(input1_data),
143 input2_shape, in2_qparams, core::utils::castInputData<int8_t>(input2_data), output_shape,
144 out_qparams, core::utils::castOutputData<int8_t>(output_data));
145 }
146 else
147 {
149 params, input1_shape.flatSize(), in1_qparams,
150 core::utils::castInputData<int8_t>(input1_data), in2_qparams,
151 core::utils::castInputData<int8_t>(input2_data), out_qparams,
152 core::utils::castOutputData<int8_t>(output_data));
153 }
154 }
155 break;
156#endif // DIS_QUANT
157 default:
158 {
159 status = UnsupportedType;
160 assert(false && "Unsupported type.");
161 }
162 }
163
164 return status;
165}
166
167} // namespace execute
168} // namespace onert_micro
uint8_t * outputs_data[maxOutputSize]
OMStatus getDataFromStorage(uint16_t op_index, core::OMRuntimeStorage &storage, core::OMRuntimeContext &context)
OMStatus readKernel(uint16_t op_index, core::OMRuntimeContext &runtime_context)
const circle::Tensor * outputs[maxOutputSize]
const circle::Tensor * inputs[maxInputSize]
const luci_interpreter::RuntimeShape output_shape
constexpr uint32_t input1TensorIdx
constexpr uint32_t outputTensorIdx
constexpr uint32_t input2TensorIdx
OMStatus BroadcastSquaredDifference4DSlow(const core::BinaryArithmeticBroadcastParams &params, const core::OMRuntimeShape &input1_shape, const T *input1_data, const core::OMRuntimeShape &input2_shape, const T *input2_data, const core::OMRuntimeShape &output_shape, T *output_data)
bool processBroadcastShapes(const core::OMRuntimeShape &shape0, const core::OMRuntimeShape &shape1, core::BinaryArithmeticBroadcastParams *params)
OMStatus QuantizedBroadcastSquaredDifference4DSlow(const core::BinaryArithmeticBroadcastParams &params, const core::OMRuntimeShape &input1_shape, const onert_micro::core::QuantizationParams &input1_qparams, const T *input1_data, const core::OMRuntimeShape &input2_shape, const onert_micro::core::QuantizationParams &input2_qparams, const T *input2_data, const core::OMRuntimeShape &output_shape, const onert_micro::core::QuantizationParams &output_qparams, T *output_data)
OMStatus QuantizedSquaredDifference(const core::BinaryArithmeticBroadcastParams &params, const int flat_size, const onert_micro::core::QuantizationParams &input1_qparams, const T *input1_data, const onert_micro::core::QuantizationParams &input2_qparams, const T *input2_data, const onert_micro::core::QuantizationParams &output_qparams, T *output_data)
OMStatus SquaredDifference(const core::BinaryArithmeticBroadcastParams &params, const int flat_size, const T *input1_data, const T *input2_data, T *output_data)
OMStatus execute_kernel_CircleSquaredDifference(const OMExecuteArgs &execute_args)
OMStatus calculateActivationRange(circle::ActivationFunctionType activation, T *activation_min, T *activation_max)
Definition OMUtils.h:36
@ UnsupportedType
Definition OMStatus.h:26
core::OMRuntimeContext & runtime_context
core::OMRuntimeStorage & runtime_storage