ONE - On-device Neural Engine
Loading...
Searching...
No Matches
DepthwiseConv2D.cpp
Go to the documentation of this file.
1/*
2 * Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "OMStatus.h"
18
19#include "core/OMUtils.h"
20#include "core/OMKernelData.h"
21
23#include "execute/OMUtils.h"
26
27#include "PALDepthwiseConv2D.h"
28
29using namespace onert_micro;
30using namespace onert_micro::core;
31using namespace onert_micro::execute;
32
33namespace
34{
35
36constexpr uint32_t inputTensorIdx = 0;
37constexpr uint32_t weightTensorIdx = 1;
38constexpr uint32_t biasTensorIdx = 2;
39
40constexpr uint32_t outputTensorIdx = 0;
41
42} // namespace
43
44// NOTE: doesn't currently support dynamic shapes
46onert_micro::execute::execute_kernel_CircleDepthwiseConv2D(const OMExecuteArgs &execute_args)
47{
48 core::OMRuntimeContext &runtime_context = execute_args.runtime_context;
49 core::OMRuntimeStorage &runtime_storage = execute_args.runtime_storage;
50 uint16_t op_index = execute_args.kernel_index;
51
52 const circle::Tensor *input;
53 const circle::Tensor *weight;
54 const circle::Tensor *output;
55
56 uint8_t *input_data;
57 uint8_t *weight_data;
58 uint8_t *bias_data;
59 uint8_t *output_data;
60
61 const circle::DepthwiseConv2DOptions *options;
62 // Read kernel
63 {
64 execute::OMRuntimeKernel runtime_kernel;
65 OMStatus status = runtime_kernel.readKernel(op_index, runtime_context);
66 if (status != Ok)
67 return status;
68
69 input = runtime_kernel.inputs[inputTensorIdx];
70 weight = runtime_kernel.inputs[weightTensorIdx];
71 output = runtime_kernel.outputs[outputTensorIdx];
72 assert(input != nullptr);
73 assert(weight != nullptr);
74 // Bias can be nullptr
75 assert(output != nullptr);
76
77 status = runtime_kernel.getDataFromStorage(op_index, runtime_storage, runtime_context);
78 if (status != Ok)
79 return status;
80
81 input_data = runtime_kernel.inputs_data[inputTensorIdx];
82 weight_data = runtime_kernel.inputs_data[weightTensorIdx];
83 bias_data = runtime_kernel.inputs_data[biasTensorIdx];
85 assert(input_data != nullptr);
86 assert(weight_data != nullptr);
87 // Bias can be nullptr
88 assert(output_data != nullptr);
89
90 options = runtime_kernel.first_operator->builtin_options_as_DepthwiseConv2DOptions();
91 }
92
93 OMStatus status;
94
95 int32_t padding_h = 0;
96 int32_t padding_w = 0;
97
98 OMRuntimeShape weight_shape(weight);
99 OMRuntimeShape input_shape(input);
100
101 const int input_width = input_shape.dims(2);
102 const int input_height = input_shape.dims(1);
103 const int weight_width = weight_shape.dims(2);
104 const int weight_height = weight_shape.dims(1);
105 execute::computePaddingHeightWidth(options->stride_h(), options->stride_w(),
106 options->dilation_h_factor(), options->dilation_w_factor(),
107 input_height, input_width, weight_height, weight_width,
108 options->padding(), &padding_h, &padding_w);
109
110 const auto output_shape = OMRuntimeShape(output);
111
112 switch (input->type())
113 {
114#ifndef DIS_FLOAT
115 case circle::TensorType_FLOAT32:
116 {
117
118 FloatConv2D params{};
119 status = calculateActivationRange(options->fused_activation_function(),
120 &params.activation_min, &params.activation_max);
121 params.stride_w = options->stride_w();
122 params.stride_h = options->stride_h();
123 params.dilation_width_factor = options->dilation_w_factor();
124 params.dilation_height_factor = options->dilation_h_factor();
125 params.depth_multiplier = options->depth_multiplier();
126 params.pad_h = padding_h;
127 params.pad_w = padding_w;
128
129 if (status != Ok)
130 return status;
131
133 &params, input_shape, core::utils::castInputData<float>(input_data), weight_shape,
134 core::utils::castInputData<float>(weight_data),
135 core::utils::castInputData<float>(bias_data), output_shape,
136 core::utils::castOutputData<float>(output_data));
137 assert(status == Ok);
138 }
139 break;
140#endif // DIS_FLOAT
141#ifndef DIS_QUANT
142 case circle::TensorType_INT8:
143 {
144 ConvQuant params{};
145 params.pad_h = padding_h;
146 params.pad_w = padding_w;
147 params.depth_multiplier = options->depth_multiplier();
148
149 const auto padding = options->padding();
150 const auto stride_height = options->stride_h();
151 const auto stride_width = options->stride_w();
152 const auto dilation_height_factor = options->dilation_h_factor();
153 const auto dilation_width_factor = options->dilation_h_factor();
154
155 params.stride_height = stride_height;
156 params.stride_width = stride_width;
157 params.dilation_height_factor = dilation_height_factor;
158 params.dilation_width_factor = dilation_width_factor;
159
160 status =
161 createConvParams(params, input, weight, output, options->fused_activation_function());
162 assert(status == Ok);
163 if (status != Ok)
164 return status;
165
167 params, input_shape, core::utils::castInputData<int8_t>(input_data), weight_shape,
168 core::utils::castInputData<int8_t>(weight_data),
169 core::utils::castInputData<int32_t>(bias_data), output_shape,
170 core::utils::castOutputData<int8_t>(output_data));
171 }
172 break;
173#endif // DIS_QUANT
174 default:
175 {
176 status = UnsupportedActivation;
177 assert(false && "Unsupported type.");
178 }
179 }
180
181 return status;
182}
uint8_t * outputs_data[maxOutputSize]
const circle::Operator * first_operator
OMStatus getDataFromStorage(uint16_t op_index, core::OMRuntimeStorage &storage, core::OMRuntimeContext &context)
OMStatus readKernel(uint16_t op_index, core::OMRuntimeContext &runtime_context)
const circle::Tensor * outputs[maxOutputSize]
const circle::Tensor * inputs[maxInputSize]
const luci_interpreter::RuntimeShape output_shape
constexpr uint32_t outputTensorIdx
list input_data
Definition infer.py:29
OMStatus DepthwiseConv2D< float >(const core::FloatConv2D *params, const core::OMRuntimeShape &input_shape, const float *input_data, const core::OMRuntimeShape &filter_shape, const float *filter_data, const float *bias_data, const core::OMRuntimeShape &output_shape, float *output_data)
OMStatus DepthwiseConvPerChannel(const core::ConvQuant &params, const core::OMRuntimeShape &input_shape, const int8_t *input_data, const core::OMRuntimeShape &filter_shape, const int8_t *filter_data, const int32_t *bias_data, const core::OMRuntimeShape &output_shape, int8_t *output_data)
OMStatus calculateActivationRange(circle::ActivationFunctionType activation, T *activation_min, T *activation_max)
Definition OMUtils.h:36
OMStatus createConvParams(core::ConvQuant &params, const circle::Tensor *input, const circle::Tensor *filter, const circle::Tensor *output, circle::ActivationFunctionType act_type)
void computePaddingHeightWidth(int32_t stride_height, int32_t stride_width, int32_t dilation_rate_height, int32_t dilation_rate_width, int32_t in_height, int32_t in_width, int32_t filter_height, int32_t filter_width, circle::Padding padding, int32_t *padding_h, int32_t *padding_w)
Definition OMUtils.h:141
@ UnsupportedActivation
Definition OMStatus.h:28
core::OMRuntimeContext & runtime_context
core::OMRuntimeStorage & runtime_storage