ONE - On-device Neural Engine
Loading...
Searching...
No Matches
InstanceNorm.cpp
Go to the documentation of this file.
1/*
2 * Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "kernels/InstanceNorm.h"
18
19#include "kernels/Utils.h"
20
21#include <tensorflow/lite/kernels/internal/common.h>
22#include <cmath>
23
24namespace luci_interpreter
25{
26namespace kernels
27{
28
29InstanceNorm::InstanceNorm(const Tensor *input, const Tensor *gamma, const Tensor *beta,
30 Tensor *output, const InstanceNormParams &params)
31 : KernelWithParams<InstanceNormParams>({input, gamma, beta}, {output}, params)
32{
33}
34
35void InstanceNorm::configure()
36{
37 LUCI_INTERPRETER_CHECK(input()->shape().num_dims() == 4);
38 LUCI_INTERPRETER_CHECK(input()->element_type() == output()->element_type());
39 LUCI_INTERPRETER_CHECK(gamma()->element_type() == input()->element_type());
40 LUCI_INTERPRETER_CHECK(gamma()->shape().num_dims() == 1);
41 LUCI_INTERPRETER_CHECK(gamma()->shape().dim(0) == input()->shape().dim(3) ||
42 gamma()->shape().dim(0) == 1);
43 LUCI_INTERPRETER_CHECK(beta()->element_type() == input()->element_type());
44 LUCI_INTERPRETER_CHECK(beta()->shape().num_dims() == 1);
45 LUCI_INTERPRETER_CHECK(beta()->shape().dim(0) == input()->shape().dim(3) ||
46 beta()->shape().dim(0) == 1);
47 // TODO: enable it only if kernel with dynamic shapes
48 output()->resize(input()->shape());
49}
50
51void InstanceNorm::execute() const
52{
53 switch (input()->element_type())
54 {
55 case DataType::FLOAT32:
56 evalFloat();
57 break;
58 default:
59 assert(false && "Unsupported type.");
60 }
61}
62
63void InstanceNorm::evalFloat() const
64{
65 float activation_min, activation_max;
66 calculateActivationRange(params().activation, &activation_min, &activation_max);
67 auto input_shape = getTensorShape(input());
69 const int32_t batches = tflite::MatchingDim(input_shape, 0, output_shape, 0);
70 const int32_t heights = tflite::MatchingDim(input_shape, 1, output_shape, 1);
71 const int32_t widths = tflite::MatchingDim(input_shape, 2, output_shape, 2);
72 const int32_t channels = tflite::MatchingDim(input_shape, 3, output_shape, 3);
73 const float *input_data = getTensorData<float>(input());
74 const float *gamma_data = getTensorData<float>(gamma());
75 auto gamma_shape = getTensorShape(gamma());
76 bool single_gamma = gamma_shape.DimensionsCount() == 1 && gamma_shape.Dims(0) == 1;
77 const float *beta_data = getTensorData<float>(beta());
78 auto beta_shape = getTensorShape(beta());
79 bool single_beta = beta_shape.DimensionsCount() == 1 && beta_shape.Dims(0) == 1;
80 float *output_data = getTensorData<float>(output());
81 for (int32_t batch = 0; batch < batches; batch++)
82 {
83 for (int32_t channel = 0; channel < channels; channel++)
84 {
85 double sum = 0.0f;
86 double square_sum = 0.0f;
87 int32_t size = heights * widths;
88 for (int32_t height = 0; height < heights; height++)
89 {
90 for (int32_t width = 0; width < widths; width++)
91 {
92 double input_val = input_data[tflite::Offset(input_shape, batch, height, width, channel)];
93 sum += input_val;
94 square_sum += (input_val * input_val);
95 }
96 }
97 double mean = sum / size;
98 double var = square_sum / size - mean * mean;
99
100 double gamma = single_gamma ? gamma_data[0] : gamma_data[channel];
101 double beta = single_beta ? beta_data[0] : beta_data[channel];
102 double a = gamma / (std::sqrt(var + params().epsilon));
103 double b = -mean * a + beta;
104
105 for (int32_t height = 0; height < heights; height++)
106 {
107 for (int32_t width = 0; width < widths; width++)
108 {
109 double input_value =
110 input_data[tflite::Offset(output_shape, batch, height, width, channel)];
111 double output_value = input_value * a + b;
112 output_data[tflite::Offset(output_shape, batch, height, width, channel)] =
113 tflite::ActivationFunctionWithMinMax((float)output_value, activation_min,
114 activation_max);
115 }
116 }
117 }
118 }
119}
120
121} // namespace kernels
122} // namespace luci_interpreter
InstanceNorm(const Tensor *input, const Tensor *gamma, const Tensor *beta, Tensor *output, const InstanceNormParams &params)
#define LUCI_INTERPRETER_CHECK(cond)
Definition Utils.h:36
const luci_interpreter::RuntimeShape output_shape
list input_data
Definition infer.py:29
tflite::RuntimeShape getTensorShape(const Tensor *tensor)
Definition Utils.h:194
void calculateActivationRange(Activation activation, T *activation_min, T *activation_max)
Definition Utils.cpp:52
int32_t size[5]
Definition Slice.cpp:35