ONE - On-device Neural Engine
Loading...
Searching...
No Matches
Utils.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved
3 * Copyright 2018 The TensorFlow Authors. All Rights Reserved.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18#ifndef __NNFW_RUY_UTILS_H__
19#define __NNFW_RUY_UTILS_H__
20
21#include "Types.h"
22#include "Shape.h"
23
24#include <stdexcept>
25
26namespace nnfw
27{
28namespace ruy
29{
30template <typename T>
31inline void ExtractPatchIntoBufferColumn(const Shape &input_shape, int w, int h, int b, int kheight,
32 int kwidth, int stride_width, int stride_height,
33 int pad_width, int pad_height, int in_width, int in_height,
34 int in_depth, int single_buffer_length, int buffer_id,
35 const T *in_data, T *conv_buffer_data, uint8_t zero_byte)
36{
37 assert(input_shape.DimensionsCount() == 4);
38 // This chunk of code reshapes all the inputs corresponding to
39 // output (b, h, w) to a column vector in conv_buffer(:, buffer_id).
40 const int kwidth_times_indepth = kwidth * in_depth;
41 const int inwidth_times_indepth = in_width * in_depth;
42 const int ih_ungated_start = h * stride_height - pad_height;
43 const int ih_ungated_end = (ih_ungated_start + kheight);
44 const int ih_end = std::min(ih_ungated_end, in_height);
45 const int iw_ungated_start = w * stride_width - pad_width;
46 const int iw_ungated_end = (iw_ungated_start + kwidth);
47 const int iw_end = std::min(iw_ungated_end, in_width);
48 // If the patch is off the edge of the input image, skip writing those rows
49 // and columns from the patch into the output array.
50 const int h_offset = std::max(0, -ih_ungated_start);
51 const int w_offset = std::max(0, -iw_ungated_start);
52 const int ih_start = std::max(0, ih_ungated_start);
53 const int iw_start = std::max(0, iw_ungated_start);
54 const int single_row_num = std::min(kwidth - w_offset, in_width - iw_start) * in_depth;
55 const int output_row_offset = (buffer_id * single_buffer_length);
56 int out_offset = output_row_offset + (h_offset * kwidth + w_offset) * in_depth;
57 int in_offset = Offset(input_shape, b, ih_start, iw_start, 0);
58
59 // Express all of the calculations as padding around the input patch.
60 const int top_padding = h_offset;
61 const int bottom_padding = (ih_ungated_end - ih_end);
62 const int left_padding = w_offset;
63 const int right_padding = (iw_ungated_end - iw_end);
64 assert(single_row_num == ((kwidth - (left_padding + right_padding)) * in_depth));
65
66 // Write out zeroes to the elements representing the top rows of the input
67 // patch that are off the edge of the input image.
68 if (top_padding > 0)
69 {
70 const int top_row_elements = (top_padding * kwidth * in_depth);
71 memset(conv_buffer_data + output_row_offset, zero_byte, (top_row_elements * sizeof(T)));
72 }
73
74 // If the patch is on the interior of the input image horizontally, just copy
75 // over the rows sequentially, otherwise add zero padding at the start or end.
76 if ((left_padding == 0) && (right_padding == 0))
77 {
78 for (int ih = ih_start; ih < ih_end; ++ih)
79 {
80 memcpy(conv_buffer_data + out_offset, in_data + in_offset, single_row_num * sizeof(T));
81 out_offset += kwidth_times_indepth;
82 in_offset += inwidth_times_indepth;
83 }
84 }
85 else
86 {
87 for (int ih = ih_start; ih < ih_end; ++ih)
88 {
89 if (left_padding > 0)
90 {
91 const int left_start = (out_offset - (left_padding * in_depth));
92 memset(conv_buffer_data + left_start, zero_byte, (left_padding * in_depth * sizeof(T)));
93 }
94 memcpy(conv_buffer_data + out_offset, in_data + in_offset, single_row_num * sizeof(T));
95 if (right_padding > 0)
96 {
97 const int right_start = (out_offset + single_row_num);
98 memset(conv_buffer_data + right_start, zero_byte, (right_padding * in_depth * sizeof(T)));
99 }
100 out_offset += kwidth_times_indepth;
101 in_offset += inwidth_times_indepth;
102 }
103 }
104
105 // If the bottom of the patch falls off the input image, pad the values
106 // representing those input rows with zeroes.
107 if (bottom_padding > 0)
108 {
109 const int bottom_row_elements = (bottom_padding * kwidth * in_depth);
110 const int bottom_start =
111 output_row_offset + ((top_padding + (ih_end - ih_start)) * kwidth * in_depth);
112 memset(conv_buffer_data + bottom_start, zero_byte, (bottom_row_elements * sizeof(T)));
113 }
114}
115
116// Supports per-batch zero_byte for per-batch asymmetric quantized inputs.
117template <typename T>
118void DilatedIm2col(const ConvParams &params, const Shape &input_shape, const T *input_data,
119 const Shape &filter_shape, const Shape &output_shape, T *im2col_data,
120 const int32_t *zero_bytes, const int zero_bytes_len)
121{
122 const int stride_width = params.stride_width;
123 const int stride_height = params.stride_height;
124 const int dilation_width_factor = params.dilation_width_factor;
125 const int dilation_height_factor = params.dilation_height_factor;
126 const int pad_width = params.padding_values.width;
127 const int pad_height = params.padding_values.height;
128 assert(input_shape.DimensionsCount() == 4);
129 assert(filter_shape.DimensionsCount() == 4);
130 assert(output_shape.DimensionsCount() == 4);
131
132 // For dilated convolution, the input pixels are not contiguous therefore we
133 // can't use the same optimizations as Im2Col(). Though note this code would
134 // work fine for the non-dilated case too (though likely a bit slower).
135 assert(dilation_width_factor != 1 || dilation_height_factor != 1);
136 assert(im2col_data);
137 const int batches = MatchingDim(input_shape, 0, output_shape, 0);
138 const int input_height = input_shape.Dims(1);
139 const int input_width = input_shape.Dims(2);
140 const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
141 const int filter_height = filter_shape.Dims(1);
142 const int filter_width = filter_shape.Dims(2);
143 const int output_height = output_shape.Dims(1);
144 const int output_width = output_shape.Dims(2);
145 MatchingDim(output_shape, 3, filter_shape, 0);
146
147 // Construct the MxN sized im2col matrix.
148 // The rows M, are sub-ordered B x H x W
149 const Shape row_shape({1, batches, output_height, output_width});
150 // The columns, N, are sub-ordered Kh x Kw x Din
151 const Shape col_shape({1, filter_height, filter_width, input_depth});
152 // Use dimensions M and N to construct dims for indexing directly into im2col
153 const Shape im2col_shape({1, 1, row_shape.FlatSize(), col_shape.FlatSize()});
154
155 // Loop through the output rows (B x H x W)
156 for (int batch = 0; batch < batches; ++batch)
157 {
158 const T zero_byte =
159 zero_bytes_len > 1 ? static_cast<T>(zero_bytes[batch]) : static_cast<T>(zero_bytes[0]);
160 for (int out_y = 0; out_y < output_height; ++out_y)
161 {
162 for (int out_x = 0; out_x < output_width; ++out_x)
163 {
164 // Each im2col row is an output pixel. Arrange the input data in this
165 // row in an order we can conveniently multiply with the filter data.
166 int row_offset = Offset(row_shape, 0, batch, out_y, out_x);
167 const int in_x_origin = (out_x * stride_width) - pad_width;
168 const int in_y_origin = (out_y * stride_height) - pad_height;
169 // Loop through all the pixels of the filter (Kh x Kw)
170 for (int filter_y = 0; filter_y < filter_height; ++filter_y)
171 {
172 const int in_y = in_y_origin + dilation_height_factor * filter_y;
173 if ((in_y >= 0) && (in_y < input_height))
174 {
175 // Filter row is within the input data.
176 // Loop through all the filter pixels in this row.
177 for (int filter_x = 0; filter_x < filter_width; ++filter_x)
178 {
179 const int in_x = in_x_origin + dilation_width_factor * filter_x;
180 int col_offset = Offset(col_shape, 0, filter_y, filter_x, 0);
181 T *dst = im2col_data + Offset(im2col_shape, 0, 0, row_offset, col_offset);
182 if ((in_x >= 0) && (in_x < input_width))
183 {
184 // Filter pixel is within the input, copy the input data.
185 T const *src = input_data + Offset(input_shape, batch, in_y, in_x, 0);
186 memcpy(dst, src, input_depth * sizeof(T));
187 }
188 else
189 {
190 // Filter pixel is outside the input, zero it out.
191 memset(dst, zero_byte, input_depth * sizeof(T));
192 }
193 }
194 }
195 else
196 {
197 // Filter row is outside the input, zero out the entire filter row.
198 int col_offset = Offset(col_shape, 0, filter_y, 0, 0);
199 T *dst = im2col_data + Offset(im2col_shape, 0, 0, row_offset, col_offset);
200 memset(dst, zero_byte, filter_width * input_depth * sizeof(T));
201 }
202 }
203 }
204 }
205 }
206}
207
208template <typename T>
209void DilatedIm2col(const ConvParams &params, uint8_t zero_byte, const Shape &input_shape,
210 const T *input_data, const Shape &filter_shape, const Shape &output_shape,
211 T *im2col_data)
212{
213 const int32_t zero_point = static_cast<int32_t>(zero_byte);
214 DilatedIm2col<T>(params, input_shape, input_data, filter_shape, output_shape, im2col_data,
215 &zero_point, 1);
216}
217
218template <typename T>
219void Im2col(const ConvParams &params, int kheight, int kwidth, uint8_t zero_byte,
220 const Shape &input_shape, const T *input_data, const Shape &output_shape,
221 T *output_data)
222{
223 const int stride_width = params.stride_width;
224 const int stride_height = params.stride_height;
225 const int pad_width = params.padding_values.width;
226 const int pad_height = params.padding_values.height;
227 assert(input_shape.DimensionsCount() == 4);
228 assert(output_shape.DimensionsCount() == 4);
229
230 const int batches = MatchingDim(input_shape, 0, output_shape, 0);
231 const int input_depth = input_shape.Dims(3);
232 const int input_width = input_shape.Dims(2);
233 const int input_height = input_shape.Dims(1);
234 const int output_depth = output_shape.Dims(3);
235 const int output_width = output_shape.Dims(2);
236 const int output_height = output_shape.Dims(1);
237
238 int buffer_id = 0;
239 // Loop over the output nodes.
240 for (int b = 0; b < batches; ++b)
241 {
242 for (int h = 0; h < output_height; ++h)
243 {
244 for (int w = 0; w < output_width; ++w)
245 {
246 ExtractPatchIntoBufferColumn(input_shape, w, h, b, kheight, kwidth, stride_width,
247 stride_height, pad_width, pad_height, input_width,
248 input_height, input_depth, output_depth, buffer_id, input_data,
249 output_data, zero_byte);
250 ++buffer_id;
251 }
252 }
253 }
254}
255
256} // namespace ruy
257} // namespace nnfw
258
259#endif // __NNFW_RUY_UTILS_H__
int32_t DimensionsCount() const
Definition Shape.h:91
int32_t Dims(int i) const
Definition Shape.h:92
const luci_interpreter::RuntimeShape output_shape
void Im2col(const ConvParams &params, int kheight, int kwidth, uint8_t zero_byte, const Shape &input_shape, const T *input_data, const Shape &output_shape, T *output_data)
Definition Utils.h:219
int Offset(const Shape &shape, int i0, int i1, int i2, int i3)
Definition Shape.h:238
void ExtractPatchIntoBufferColumn(const Shape &input_shape, int w, int h, int b, int kheight, int kwidth, int stride_width, int stride_height, int pad_width, int pad_height, int in_width, int in_height, int in_depth, int single_buffer_length, int buffer_id, const T *in_data, T *conv_buffer_data, uint8_t zero_byte)
Definition Utils.h:31
void DilatedIm2col(const ConvParams &params, const Shape &input_shape, const T *input_data, const Shape &filter_shape, const Shape &output_shape, T *im2col_data, const int32_t *zero_bytes, const int zero_bytes_len)
Definition Utils.h:118
int MatchingDim(const Shape &shape1, int index1, const Shape &shape2, int index2)
Definition Shape.h:221
Definition topk_v2.h:30
PaddingValues padding_values
Definition Types.h:59
int16_t dilation_height_factor
Definition Types.h:64
int16_t stride_width
Definition Types.h:61
int16_t dilation_width_factor
Definition Types.h:63
int16_t stride_height
Definition Types.h:62