ONE - On-device Neural Engine
Loading...
Searching...
No Matches
LogSoftMax.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef __NNFW_CKER_LOGSOFTMAX_H__
18#define __NNFW_CKER_LOGSOFTMAX_H__
19
20#include "cker/Shape.h"
21#include "cker/Utils.h"
22#include "cker/Types.h"
23#include "cker/eigen/Utils.h"
24
25#include <Eigen/Core>
26#include <fixedpoint/fixedpoint.h>
27#include <cmath>
28
29namespace nnfw
30{
31namespace cker
32{
33
34inline void LogSoftmax(const SoftmaxParams &params, const Shape &input_shape,
35 const float *input_data, const Shape &output_shape, float *output_data)
36{
37 const int rank = input_shape.DimensionsCount();
38 const int axis = (params.axis < 0) ? params.axis + rank : params.axis;
39 const double beta = params.beta;
40 const int depth = MatchingDim(input_shape, axis, output_shape, axis);
41
42 int outer_size = 1;
43 for (int i = 0; i < axis; ++i)
44 {
45 outer_size *= input_shape.Dims(i);
46 }
47
48 int inner_size = 1;
49 for (int i = axis + 1; i < rank; ++i)
50 {
51 inner_size *= input_shape.Dims(i);
52 }
53
54 for (int i = 0; i < outer_size; ++i)
55 {
56 for (int j = 0; j < inner_size; ++j)
57 {
58 float max = std::numeric_limits<float>::lowest();
59 for (int c = 0; c < depth; ++c)
60 {
61 max = std::max(max, input_data[(i * depth + c) * inner_size]);
62 }
63
64 float sum = 0.f;
65 for (int c = 0; c < depth; ++c)
66 {
67 sum += std::exp((input_data[(i * depth + c) * inner_size + j] - max) * beta);
68 }
69
70 const float log_sum = std::log(sum);
71 for (int c = 0; c < depth; ++c)
72 {
73 output_data[(i * depth + c) * inner_size + j] =
74 (input_data[(i * depth + c) * inner_size + j] - max) * beta - log_sum;
75 }
76 }
77 }
78}
79
80inline void LogSoftmax(const SoftmaxParams &params, float input_scale, const Shape &input_shape,
81 const uint8_t *input_data, const Shape &output_shape, uint8_t *output_data)
82{
83 const int rank = input_shape.DimensionsCount();
84 const int axis = (params.axis < 0) ? params.axis + rank : params.axis;
85 const double beta = params.beta;
86 const int depth = MatchingDim(input_shape, axis, output_shape, axis);
87
88 const int32_t clamp_max = std::numeric_limits<uint8_t>::max();
89 const int32_t clamp_min = std::numeric_limits<uint8_t>::min();
90
91 int outer_size = 1;
92 for (int i = 0; i < axis; ++i)
93 {
94 outer_size *= input_shape.Dims(i);
95 }
96
97 int inner_size = 1;
98 for (int i = axis + 1; i < rank; ++i)
99 {
100 inner_size *= input_shape.Dims(i);
101 }
102
103 for (int i = 0; i < outer_size; ++i)
104 {
105 for (int j = 0; j < inner_size; ++j)
106 {
107 uint8_t max_val = std::numeric_limits<uint8_t>::min();
108 for (int c = 0; c < depth; ++c)
109 {
110 max_val = std::max(max_val, input_data[(i * depth + c) * inner_size]);
111 }
112
113 float sum_exp = 0.0f;
114 const int32_t max_uint8 = std::numeric_limits<uint8_t>::max();
115 const float *table_offset = &params.table[max_uint8 - max_val];
116 for (int c = 0; c < depth; ++c)
117 {
118 sum_exp += table_offset[input_data[(i * depth + c) * inner_size]];
119 }
120 const float log_sum_exp = std::log(sum_exp);
121
122 const float scale = input_scale / params.scale;
123 const float precomputed = (input_scale * max_val * beta + log_sum_exp) / params.scale;
124 for (int c = 0; c < depth; ++c)
125 {
126 const float log_prob =
127 scale * input_data[(i * depth + c) * inner_size] * beta - precomputed;
128 const int32_t prob_quantized = std::rint(log_prob) + params.zero_point;
129 output_data[(i * depth + c) * inner_size] =
130 static_cast<uint8_t>(std::max(std::min(clamp_max, prob_quantized), clamp_min));
131 }
132 }
133 }
134}
135
136} // namespace cker
137} // namespace nnfw
138
139#endif // __NNFW_CKER_LOGSOFTMAX_H__
int32_t DimensionsCount() const
Definition Shape.h:91
int32_t Dims(int i) const
Definition Shape.h:92
const luci_interpreter::RuntimeShape output_shape
int MatchingDim(const Shape &shape1, int index1, const Shape &shape2, int index2)
Definition Shape.h:220
void LogSoftmax(const SoftmaxParams &params, const Shape &input_shape, const float *input_data, const Shape &output_shape, float *output_data)
Definition LogSoftMax.h:34
Definition topk_v2.h:30